ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Large-scale Convection Zone-to-Corona Models

135   0   0.0 ( 0 )
 نشر من قبل George Fisher
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce two new methods that are designed to improve the realism and utility of large, active region-scale 3D MHD models of the solar atmosphere. We apply these methods to RADMHD, a code capable of modeling the Suns upper convection zone, photosphere, chromosphere, transition region, and corona within a single computational volume. We first present a way to approximate the physics of optically-thick radiative transfer without having to take the computationally expensive step of solving the radiative transfer equation in detail. We then briefly describe a rudimentary assimilative technique that allows a time series of vector magnetograms to be directly incorporated into the MHD system.



قيم البحث

اقرأ أيضاً

We present a series of numerical simulations of the quiet Sun plasma threaded by magnetic fields that extend from the upper convection zone into the low corona. We discuss an efficient, simplified approximation to the physics of optically thick radia tive transport through the surface layers, and investigate the effects of convective turbulence on the magnetic structure of the Suns atmosphere in an initially unipolar (open field) region. We find that the net Poynting flux below the surface is on average directed toward the interior, while in the photosphere and chromosphere the net flow of electromagnetic energy is outward into the solar corona. Overturning convective motions between these layers driven by rapid radiative cooling appears to be the source of energy for the oppositely directed fluxes of electromagnetic energy.
We present a comprehensive radiative magnetohydrodynamic simulation of the quiet Sun and large solar active regions. The 197 Mm wide simulation domain spans from the uppermost convection zone to over 100 Mm in the solar corona. Sophisticated treatmen ts of radiative transfer and conduction transport provide the necessary realism for synthesizing observables to compare with remote sensing observations of the Sun. This model self-consistently reproduces observed features of the quiet Sun, emerging and developed active regions, and solar flares up to M class. Here, we report an overview on the first results. The surface magnetoconvection yields an upward Poynting flux that is dissipated in the corona and heats the plasma to over one million K. The quiescent corona also presents ubiquitous propagating waves, jets, and bright points with sizes down to 2 Mm. Magnetic flux bundles generated in a solar convective dynamo emerge into the photosphere and gives rise to strong and complex active regions with Over $10^{23}$ Mx magnetic flux. The coronal free magnetic energy, which is about 18% of the total magnetic energy, accumulates to about $10^{33}$ erg. The coronal magnetic field is not forcefree, as the Lorentz force needs to balance the pressure force and viscous stress as well as to drive magnetic field evolution. Emission measure from $log_{10}T = 4.5$ to $log_{10}T > 7$ provides a comprehensive view on structures and dynamics in the active region corona, such as coronal loops in various lengths and temperatures, mass circulation by evaporation and condensation, and eruptions from jets to large-scale mass ejections.
3D numerical simulations of a horizontal magnetic flux tube emergence with different twist are carried out in a computational domain spanning the upper layers of the convection zone to the lower corona. We use the Oslo Staggered Code to solve the ful l MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. The emergence of the magnetic flux tube input at the bottom boundary into a weakly magnetized atmosphere is presented. The photospheric and chromospheric response is described with magnetograms, synthetic images and velocity field distributions. The emergence of a magnetic flux tube into such an atmosphere results in varied atmospheric responses. In the photosphere the granular size increases when the flux tube approaches from below. In the convective overshoot region some 200km above the photosphere adiabatic expansion produces cooling, darker regions with the structure of granulation cells. We also find collapsed granulation in the boundaries of the rising flux tube. Once the flux tube has crossed the photosphere, bright points related with concentrated magnetic field, vorticity, high vertical velocities and heating by compressed material are found at heights up to 500km above the photosphere. At greater heights in the magnetized chromosphere, the rising flux tube produces a cool, magnetized bubble that tends to expel the usual chromospheric oscillations. In addition the rising flux tube dramatically increases the chromospheric scale height, pushing the transition region and corona aside such that the chromosphere extends up to 6Mm above the photosphere. The emergence of magnetic flux tubes through the photosphere to the lower corona is a relatively slow process, taking of order 1 hour.
The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 (PROBA2) spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since February 2010. With a f ield-of-view of 54x54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAPs point spread function (PSF) from the observations. In this paper we use the resulting images to conduct the first ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three-year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic field that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.
The standard theory of pulsations deals with the frequencies and growth rates of infinitesimal perturbations in a stellar model. Modes which are calculated to be linearly driven should increase their amplitudes exponentially with time; the fact that nearly constant amplitudes are usually observed is evidence that nonlinear mechanisms inhibit the growth of finite amplitude pulsations. Models predict that the mass of convection zones in pulsating hydrogen-atmosphere (DAV) white dwarfs is very sensitive to temperature (i.e., $M_{rm CZ} propto T_{rm eff}^{-90}$), leading to the possibility that even low-amplitude pulsators may experience significant nonlinear effects. In particular, the outer turning point of finite-amplitude g-mode pulsations can vary with the local surface temperature, producing a reflected wave that is out of phase with what is required for a standing wave. This can lead to a lack of coherence of the mode and a reduction in its global amplitude. In this paper we show that: (1) whether a mode is calculated to propagate to the base of the convection zone is an accurate predictor of its width in the Fourier spectrum, (2) the phase shifts produced by reflection from the outer turning point are large enough to produce significant damping, and (3) amplitudes and periods are predicted to increase from the blue edge to the middle of the instability strip, and subsequently decrease as the red edge is approached. This amplitude decrease is in agreement with the observational data while the period decrease has not yet been systematically studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا