ترغب بنشر مسار تعليمي؟ اضغط هنا

Dilepton production in p+p, Cu+Cu and Au+Au collisions at 200 AGeV

203   0   0.0 ( 0 )
 نشر من قبل Jaakko Manninen
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study dilepton production in proton-proton, Cu+Cu as well as in Au+Au collisions at the center-of-mass energy 200 GeV per participating nucleon pair within an extended statistical hadronization model. In extension to earlier studies we incorporate transport calculations for an estimate of uncorrelated e+e- -pairs from semileptonic D meson decays. While the invariant mass spectrum of dielectrons is well understood in the p+p collisions, severe discrepancies among different model scenarios based on hadronic degrees of freedom and recent data from the PHENIX Collaboration are found in heavy-ion collisions in the low mass region from 0.15 to 0.6 GeV as well as in the intermediate mass regime from 1.1 to 3 GeV when employing the standard dilepton sources. We investigate, furthermore, the background from correlated dileptons that are not emitted as a pair from a parent hadron but emerge from semileptonic decays of two correlated daughter hadrons. Our calculations suggest a sizeable contribution of such sources in central heavy-ion collisions in the low mass region. However, even the upper limits of our calculations are found to be far below the dilepton mass spectra of the PHENIX Collaboration.



قيم البحث

اقرأ أيضاً

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured omega meson production via leptonic and hadronic decay channels in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN) = 200 GeV. The invariant transverse momentum spec tra measured in different decay modes give consistent results. Measurements in the hadronic decay channel in Cu+Cu and Au+Au collisions show that omega production has a suppression pattern at high transverse momentum, similar to that of pi^0 and eta in central collisions, but no suppression is observed in peripheral collisions. The nuclear modification factors, R_AA, are consistent in Cu+Cu and Au+Au collisions at similar numbers of participant nucleons.
We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 to K+ pi- and bar{K*0} to K-p i+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, <pT>, are presented. The measured N(K*0)/N(K) and N(phi)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 < pT < 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production.
The fraction of $J/psi$ mesons which come from B-meson decay, $textrm{F}_{B{rightarrow}J/psi}$, is measured for J/$psi$ rapidity mbox{$1.2<|y|<2.2$} and $p_T>0$ in $p$+$p$ and Cu+Au collisions at $sqrt{s_{_{NN}}}$=200 GeV with the PHENIX detector. Th e extracted fraction is $textrm{F}_{B{rightarrow}J/psi}$ = 0.025 $pm$ 0.006(stat) $pm$ 0.010(syst) for $p$+$p$ collisions. For Cu+Au collisions, $textrm{F}_{B{rightarrow}J/psi}$ is 0.094 $pm$ 0.028(stat) $pm$ 0.037(syst) in the Au-going direction ($-2.2<y<-1.2$) and 0.089 $pm$ 0.026(stat) $pm$ 0.040(syst) in the Cu-going direction ($1.2<y<2.2$). The nuclear modification factor, $R_{rm CuAu}$, of B mesons in Cu+Au collisions is consistent with binary scaling of measured yields in $p$+$p$ at both forward and backward rapidity.
We report new STAR measurements of mid-rapidity yields for the $Lambda$, $bar{Lambda}$, $K^{0}_{S}$, $Xi^{-}$, $bar{Xi}^{+}$, $Omega^{-}$, $bar{Omega}^{+}$ particles in Cu+Cu collisions at sNN{200}, and mid-rapidity yields for the $Lambda$, $bar{Lamb da}$, $K^{0}_{S}$ particles in Au+Au at sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.
161 - B.Alver , B.B.Back , M.D.Baker 2010
Pseudorapidity distributions of charged particles emitted in $Au+Au$, $Cu+Cu$, $d+Au$, and $p+p$ collisions over a wide energy range have been measured using the PHOBOS detector at RHIC. The centrality dependence of both the charged particle distribu tions and the multiplicity at midrapidity were measured. Pseudorapidity distributions of charged particles emitted with $|eta|<5.4$, which account for between 95% and 99% of the total charged-particle emission associated with collision participants, are presented for different collision centralities. Both the midrapidity density, $dN_{ch}/deta$, and the total charged-particle multiplicity, $N_{ch}$, are found to factorize into a product of independent functions of collision energy, $sqrt{s_{_{NN}}}$, and centrality given in terms of the number of nucleons participating in the collision, $N_{part}$. The total charged particle multiplicity, observed in these experiments and those at lower energies, assumes a linear dependence of $(ln s_{_{NN}})^2$ over the full range of collision energy of $sqrt{s_{_{NN}}}$=2.7-200 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا