ﻻ يوجد ملخص باللغة العربية
HII regions are the birth places of stars, and as such they provide the best measure of current star formation rates (SFRs) in galaxies. The close proximity of the Magellanic Clouds allows us to probe the nature of these star forming regions at small spatial scales. We aim to determine the monochromatic IR band that most accurately traces the bolometric IR flux (TIR), which can then be used to estimate an obscured SFR. We present the spatial analysis, via aperture/annulus photometry, of 16 LMC and 16 SMC HII region complexes using the Spitzer IRAC and MIPS bands. UV rocket data and SHASSA H-alpha data are also included. We find that nearly all of the LMC and SMC HII region SEDs peak around 70um, from ~10 to ~400 pc from the central sources. As a result, the sizes of HII regions as probed by 70um is approximately equal to the sizes as probed by TIR (about 70 pc in radius); the radial profile of the 70um flux, normalized by TIR, is constant at all radii (70um ~ 0.45 TIR); the 1-sigma standard deviation of the 70um fluxes, normalized by TIR, is a lower fraction of the mean (0.05 to 0.12 out to ~220 pc) than the normalized 8, 24, and 160um normalized fluxes (0.12 to 0.52); and these results are invariant between the LMC and SMC. From these results, we argue that 70um is the most suitable IR band to use as a monochromatic obscured star formation indicator because it most accurately reproduces the TIR of HII regions in the LMC and SMC and over large spatial scales. We also explore the general trends of the 8, 24, 70, and 160um bands in the LMC and SMC HII region SEDs, radial surface brightness profiles, sizes, and normalized (by TIR) radial flux profiles. We derive an obscured SFR equation that is modified from the literature to use 70um luminosity, SFR(Mo/yr) = 9.7(0.7)x10^{-44} L(70)(ergs/s), which is applicable from 10 to 300 pc distance from the center of an HII region.
We present a cluster analysis of the bright main-sequence and faint pre--main-sequence stellar populations of a field ~ 90 x 90 pc centered on the HII region NGC 346/N66 in the Small Magellanic Cloud, from imaging with HST/ACS. We extend our earlier
We present new Spitzer Space Telescope observations of the region NGC 2467, and use these observations to determine how the environment of an HII region affects the process of star formation. Our observations comprise IRAC (3.6, 4.5, 5.8, and 8.0 um)
The star complexes (large scale star forming regions) of NGC 6822 were traced and mapped and their size distribution was compared with the size distribution of star complexes in the Magellanic Clouds (MCs). Furthermore, the spatial distributions of d
We present preliminary results from a new HST archival program aimed at tightly constraining the ancient (>4 Gyr ago) star formation histories (SFHs) of the field populations of the SMC and LMC. We demonstrate the quality of the archival data by cons
We present a study of the mid-infrared properties and dust content of a sample of 27 HII ``blobs, a rare class of compact HII regions in the Magellanic Clouds. A unique feature of this sample is that even though these HII regions are of high and low