ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer Analysis of HII Region Complexes in the Magellanic Clouds: Determining a Suitable Monochromatic Obscured Star Formation Indicator

122   0   0.0 ( 0 )
 نشر من قبل Brandon Lawton
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HII regions are the birth places of stars, and as such they provide the best measure of current star formation rates (SFRs) in galaxies. The close proximity of the Magellanic Clouds allows us to probe the nature of these star forming regions at small spatial scales. We aim to determine the monochromatic IR band that most accurately traces the bolometric IR flux (TIR), which can then be used to estimate an obscured SFR. We present the spatial analysis, via aperture/annulus photometry, of 16 LMC and 16 SMC HII region complexes using the Spitzer IRAC and MIPS bands. UV rocket data and SHASSA H-alpha data are also included. We find that nearly all of the LMC and SMC HII region SEDs peak around 70um, from ~10 to ~400 pc from the central sources. As a result, the sizes of HII regions as probed by 70um is approximately equal to the sizes as probed by TIR (about 70 pc in radius); the radial profile of the 70um flux, normalized by TIR, is constant at all radii (70um ~ 0.45 TIR); the 1-sigma standard deviation of the 70um fluxes, normalized by TIR, is a lower fraction of the mean (0.05 to 0.12 out to ~220 pc) than the normalized 8, 24, and 160um normalized fluxes (0.12 to 0.52); and these results are invariant between the LMC and SMC. From these results, we argue that 70um is the most suitable IR band to use as a monochromatic obscured star formation indicator because it most accurately reproduces the TIR of HII regions in the LMC and SMC and over large spatial scales. We also explore the general trends of the 8, 24, 70, and 160um bands in the LMC and SMC HII region SEDs, radial surface brightness profiles, sizes, and normalized (by TIR) radial flux profiles. We derive an obscured SFR equation that is modified from the literature to use 70um luminosity, SFR(Mo/yr) = 9.7(0.7)x10^{-44} L(70)(ergs/s), which is applicable from 10 to 300 pc distance from the center of an HII region.



قيم البحث

اقرأ أيضاً

We present a cluster analysis of the bright main-sequence and faint pre--main-sequence stellar populations of a field ~ 90 x 90 pc centered on the HII region NGC 346/N66 in the Small Magellanic Cloud, from imaging with HST/ACS. We extend our earlier analysis on the stellar cluster population in the region to characterize the structuring behavior of young stars in the region as a whole with the use of stellar density maps interpreted through techniques designed for the study of the ISM structuring. In particular, we demonstrate with Cartwrigth & Whitworths Q parameter, dendrograms, and the Delta-variance wavelet transform technique that the young stellar populations in the region NGC 346/N66 are hierarchically clustered, in agreement with other regions in the Magellanic Clouds observed with HST. The origin of this hierarchy is currently under investigation.
We present new Spitzer Space Telescope observations of the region NGC 2467, and use these observations to determine how the environment of an HII region affects the process of star formation. Our observations comprise IRAC (3.6, 4.5, 5.8, and 8.0 um) and MIPS (24 um) maps of the region, covering approximately 400 square arcminutes. The images show a region of ionized gas pushing out into the surrounding molecular cloud, powered by an O6V star and two clusters of massive stars in the region. We have identified as candidate Young Stellar Objects (YSOs) 45 sources in NGC 2467 with infrared excesses in at least two mid-infrared colors. We have constructed color-color diagrams of these sources and have quantified their spatial distribution within the region. We find that the YSOs are not randomly distributed in NGC 2467; rather, over 75% of the sources are distributed at the edge of the HII region, along ionization fronts driven by the nearby massive stars. The high fraction of YSOs in NGC 2467 that are found in proximity to gas that has been compressed by ionization fronts supports the hypothesis that a significant fraction of the star formation in NGC 2467 is triggered by the massive stars and the expansion of the HII region. At the current rate of star formation, we estimate at least 25-50% of the total population of YSOs formed by this process.
122 - A. Karampelas 2009
The star complexes (large scale star forming regions) of NGC 6822 were traced and mapped and their size distribution was compared with the size distribution of star complexes in the Magellanic Clouds (MCs). Furthermore, the spatial distributions of d ifferent age stellar populations were compared with each other. The star complexes of NGC 6822 were determined by using the isopleths, based on star counts, of the young stars of the galaxy, using a statistical cutoff limit in density. In order to map them and determine their geometrical properties, an ellipse was fitted to every distinct region satisfying this minimum limit. The Kolmogorov-Smirnov statistical test was used to study possible patterns in their size distribution. Isopleths were also used to study the stellar populations of NGC 6822. The star complexes of NGC 6822 were detected and a list of their positions and sizes was produced. Indications of hierarchical star formation, in terms of spatial distribution, time evolution and preferable sizes were found in NGC 6822 and the MCs. The spatial distribution of the various age stellar populations has indicated traces of an interaction in NGC 6822, dated before 350 +/- 50 Myr.
We present preliminary results from a new HST archival program aimed at tightly constraining the ancient (>4 Gyr ago) star formation histories (SFHs) of the field populations of the SMC and LMC. We demonstrate the quality of the archival data by cons tructing HST/WFPC2-based color-magnitude diagrams (CMDs; M_{F555W} ~ +8) for 7 spatially diverse fields in the SMC and 8 fields in the LMC. The HST-based CMDs are >2 magnitudes deeper than any from ground based observations, and are particularly superior in high surface brightness regions, e.g., the LMC bar, which contain a significant fraction of star formation and are crowding limited from ground based observations. To minimize systematic uncertainties, we derive the SFH of each field using an identical maximum likelihood CMD fitting technique. We then compute an approximate mass weighted average SFH for each galaxy. We find that both galaxies lack a dominant burst of early star formation, which suggests either a suppression or an under-fueling of early star formation. From 10-12 Gyr ago, the LMC experienced a period of enhanced stellar mass growth relative to the SMC. Similar to some previous studies, we find two notable peaks in the SFH of the SMC at ~4.5 and 9 Gyr ago, which could be due to repeated close passages with the LMC, implying an interaction history that has persisted for at least 9 Gyr. We find little evidence for strong periodic behavior in the lifetime SFHs of both MCs, suggesting that repeated encounters with the Milky Way are unlikely. Beginning ~3.5 Gyr ago, both galaxies show increases in their SFHs, in agreement with previous studies, and thereafter, track each other remarkably well. (abridged)
231 - V. Charmandaris 2008
We present a study of the mid-infrared properties and dust content of a sample of 27 HII ``blobs, a rare class of compact HII regions in the Magellanic Clouds. A unique feature of this sample is that even though these HII regions are of high and low excitation they have nearly the same physical sizes ~1.5-3 pc. We base our analysis on archival 3-8 microns infrared imagery obtained with the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope. We find that despite their youth, sub-solar metallicity and varied degrees of excitation, the mid-infrared colors of these regions are similar to those of typical HII regions. Higher excitation ``blobs (HEBs) display stronger 8 micron emission and redder colors than their low-excitation counterparts (LEBs).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا