ﻻ يوجد ملخص باللغة العربية
In this paper we present simulated observations of massive self-gravitating circumstellar discs using the Atacama Large Millimetre/sub-millimetre Array (ALMA). Using a smoothed particle hydrodynamics model of a $0.2M_{odot}$ disc orbiting a $1M_{odot}$ protostar, with a cooling model appropriate for discs at temperatures below $sim 160$K and representative dust opacities, we have constructed maps of the expected emission at sub-mm wavelengths. We have then used the CASA ALMA simulator to generate simulated images and visibilities with various array configurations and observation frequencies, taking into account the expected thermal noise and atmospheric opacities. We find that at 345 GHz (870 $mu$m) spiral structures at a resolution of a few AU should be readily detectable in approximately face-on discs out to distances of the Taurus-Auriga star-forming complex.
Self-gravity becomes competitive as an angular momentum transport process in accretion discs at large radii, where the temperature is low enough that external irradiation likely contributes to the thermal balance. Irradiation is known to weaken the s
It is quite likely that self-gravity will play an important role in the evolution of accretion discs, in particular those around young stars, and those around supermassive black holes. We summarise, here, our current understanding of the evolution of
Horseshoe-shaped brightness asymmetries of several transitional discs are thought to be caused by large-scale vortices. Anticyclonic vortices are efficiently collect dust particles, therefore they can play a major role in planet formation. Former stu
A significant fraction of main-sequence stars are encircled by dusty debris discs, where the short-lived dust particles are replenished through collisions between planetesimals. Most destructive collisions occur when the orbits of smaller bodies are
We investigate how the detectability of signatures of self-gravity in a protoplanetary disc depends on its temporal evolution. We run a one-dimensional model for secular timescales to follow the disc mass as a function of time. We then combine this w