ترغب بنشر مسار تعليمي؟ اضغط هنا

The light curves of type Ia Supernova 2008gy

202   0   0.0 ( 0 )
 نشر من قبل Tsvetkov Dmitry
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CCD BVRI photometry is presented for type Ia supernova 2008gy. The light curves match the template curves for fast-declining SN Ia, but the colors appear redder than average, and the SN may also be slightly subluminous. SN 2008gy is found to be located far outside the boundaries of three nearest galaxies, each of them has nearly equal probability to be the host galaxy.



قيم البحث

اقرأ أيضاً

Upcoming high-cadence transient survey programmes will produce a wealth of observational data for Type Ia supernovae. These data sets will contain numerous events detected very early in their evolution, shortly after explosion. Here, we present synth etic light curves, calculated with the radiation hydrodynamical approach Stella for a number of different explosion models, specifically focusing on these first few days after explosion. We show that overall the early light curve evolution is similar for most of the investigated models. Characteristic imprints are induced by radioactive material located close to the surface. However, these are very similar to the signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from the pure deflagration explosion models, none of our synthetic light curves exhibit the commonly assumed power-law rise. We demonstrate that this can lead to substantial errors in the determination of the time of explosion. In summary, we illustrate with our calculations that even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available.
With growing data from ongoing and future supernova surveys it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationship is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called principal component scores. These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves, for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II $lambda$6355 line. This is important for supernova surveys, e.g., LSST and WFIRST. Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.
280 - Yi Yang , Lifan Wang (1 2017
The very nearby Type Ia supernova 2014J in M82 offers a rare opportunity to study the physics of thermonuclear supernovae at extremely late phases ($gtrsim$800 days). Using the Hubble Space Telescope (HST), we obtained six epochs of high precision ph otometry for SN 2014J from 277 days to 1181 days past the $B-$band maximum light. The reprocessing of electrons and X-rays emitted by the radioactive decay chain $^{57}$Co$rightarrow ^{57}$Fe are needed to explain the significant flattening of both the $F606W$-band and the pseudo-bolometric light curves. The flattening confirms previous predictions that the late-time evolution of type Ia supernova luminosities requires additional energy input from the decay of $^{57}$Co (Seitenzahl et al. 2009). By assuming the $F606W$-band luminosity scales with the bolometric luminosity at $sim$500 days after the $B-$band maximum light, a mass ratio $^{57}$Ni/$^{56}$Ni$sim$0.065$_{-0.004}^{+0.005}$ is required. This mass ratio is roughly $sim$3 times the solar ratio and favors a progenitor white dwarf with a mass near the Chandrasekhar limit. A similar fit using the constructed pseudo-bolometric luminosity gives a mass ratio $^{57}$Ni/$^{56}$Ni$sim$0.066$_{-0.008}^{+0.009}$. Astrometric tests based on the multi-epoch HST ACS/WFC images reveal no significant circumstellar light echoes in between 0.3 pc and 100 pc (Yang et al. 2017) from the supernova.
91 - S. I. Blinnikov 2006
We present synthetic bolometric and broad-band UBVRI light curves of SNe Ia, for four selected 3-D deflagration models of thermonuclear supernovae. The light curves are computed with the 1-D hydro code STELLA, which models (multi-group time-dependent ) non-equilibrium radiative transfer inside SN ejecta. Angle-averaged results from 3-D hydrodynamical explosion simulations with the composition determined in a nucleosynthetic postprocessing step served as the input to the radiative transfer model. The predicted model UBV light curves do agree reasonably well with the observed ones for SNe Ia in the range of low to normal luminosities, although the underlying hydrodynamical explosion models produced only a modest amount of radioactive Ni56 and relatively low kinetic energy in the explosion. The evolution of predicted B and V fluxes in the model with a Ni56 mass of 0.42 M_sun follows the observed decline rate after the maximum very well, although the behavior of fluxes in other filters somewhat deviates from observations, and the bolometric decline rate is a bit slow. Using our models, we check the validity of Arnetts rule and the accuracy of the procedure for extracting the Ni56 mass from the observed light curves. We find that the comparison between theoretical light curves and observations provides a useful tool to validate SN Ia models. The steps necessary to improve the agreement between theory and observations are set out.
We present a revised SALT2 surface (`SALT2-2021) for fitting the light curves of Type Ia supernovae (SNe Ia), which incorporates new measurements of zero-point calibration offsets and Milky Way extinction. The most notable change in the new surface o ccurs in the UV region. This new surface alters the distance measurements of SNe~Ia, which can be used to investigate the nature of dark energy by probing the expansion history of the Universe. Using the revised SALT2 surface on public data from the first three years of the Dark Energy Survey Supernova Program (combined with an external low-$z$ SNe Ia sample) and combining with cosmic microwave background constraints, we find a change in the dark energy equation of state parameter, $Delta w = 0.015 pm 0.004$. This result highlights the continued importance of controlling and reducing systematic uncertainties, particularly with the next generation of supernova analyses aiming to improve constraints on dark energy properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا