ﻻ يوجد ملخص باللغة العربية
Investigating the anisotropy of superconductors permits an access to fundamental properties. Having succeeded in the fabrication of epitaxial superconducting LaFeAs(O,F) thin films we performed an extensive study of electrical transport properties. In face of multiband superconductivity we can demonstrate that a Blatter scaling of the angular dependent critical current densities can be adopted, although being originally developed for single band superconductors. In contrast to single band superconductors the mass anisotropy of LaFeAs(O,F) is temperature dependent. A very steep increase of the upper critical field and the irreversibility field can be observed at temperatures below 6K, indicating that the band with the smaller gap is in the dirty limit. This temperature dependence can be theoretically described by two dominating bands responsible for superconductivity. A pinning force scaling provides insight into the prevalent pinning mechanism and can be specified in terms of the Kramer model.
Generally, studies of the critical current Ic are necessary if superconductors are to be of practical use because Ic sets the current limit below which there is a zero-resistance state. Here, we report a peak in the pressure dependence of the zero-fi
The existence of a {it stable critical point}, separate from the Gaussian and XY critical points, of the Ginzburg-Landau theory for superconductors, is demonstrated by direct extraction via Monte-Carlo simulations, of a negative anomalous dimension $
Universal scaling behaviour in superconductors has significantly elucidated fluctuation and phase transition phenomena in these materials. However, universal behaviour for the most practical property, the critical current, was not contemplated becaus
A method is proposed for estimating the length scale of currents circulating in superconductors. The estimated circulation radius is used to determine the critical current density on the basis of magnetic measurements. The obtained formulas are appli
A family of titanium oxypnictide materials BaTi2Pn2O (Pn = pnictogen) becomes superconducting when a charge and/or spin density wave is suppressed. With hole doping, isovalent doping and pressure, a whole range of tuning parameters is available. We i