ﻻ يوجد ملخص باللغة العربية
Kakimizu complex of a knot is a flag simplicial complex whose vertices correspond to minimal genus Seifert surfaces and edges to disjoint pairs of such surfaces. We discuss a general setting in which one can define a similar complex. We prove that this complex is contractible, which was conjectured by Kakimizu. More generally, the fixed-point set (in the Kakimizu complex) for any subgroup of an appropriate mapping class group is contractible or empty. Moreover, we prove that this fixed-point set is non-empty for finite subgroups, which implies the existence of symmetric Seifert surfaces.
In 1992, Osamu Kakimizu defined a complex that has become known as the Kakimizu complex of a knot. Vertices correspond to isotopy classes of minimal genus Seifert surfaces of the knot. Higher dimensional simplices correspond to collections of such cl
The Kakimizu complex is usually defined in the context of knots, where it is known to be quasi-Euclidean. We here generalize the definition of the Kakimizu complex to surfaces and 3-manifolds (with or without boundary). Interestingly, in the setting
We define the surface complex for $3$-manifolds and embark on a case study in the arena of Seifert fibered spaces. The base orbifold of a Seifert fibered space captures some of the topology of the Seifert fibered space, so, not surprisingly, the surf
The fundamental group $pi_1(L)$ of a knot or link $L$ may be used to generate magic states appropriate for performing universal quantum computation and simultaneously for retrieving complete information about the processed quantum states. In this pap
The coefficients of twisted Alexander polynomials of a knot induce regular functions of the $SL_2(mathbb{C})$-character variety. We prove that the function of the highest degree has a finite value at an ideal point which gives a minimal genus Seifert