ترغب بنشر مسار تعليمي؟ اضغط هنا

Global VLBI Observations of the 6.0 GHz Hydroxyl Masers in Onsala 1

122   0   0.0 ( 0 )
 نشر من قبل Vincent L. Fish
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Vincent L. Fish




اسأل ChatGPT حول البحث

We present global VLBI observations of the first-excited state OH masers in the massive star-forming region Onsala 1 (ON 1). The 29 masers detected are nearly all from the 6035 MHz transition, and nearly all are identifiable as Zeeman pair components. The 6030 and 6035 MHz masers are coincident with previously published positions of ground-state masers to within a few milliarcseconds, and the magnetic fields deduced from Zeeman splitting are comparable. The 6.0 GHz masers in ON 1 are always found in close spatial association with 1665 MHz OH masers, in contrast to the situation in the massive star-forming region W3(OH), suggesting that extreme high density OH maser sites (excited-state masers with no accompanying ground-state maser, as seen in W3(OH)) are absent from ON 1. The large magnetic field strength among the northern, blueshifted masers is confirmed. The northern masers may trace an outflow or be associated with an exciting source separate from the other masers, or the relative velocities of the northern and southern masers may be indicative of expansion and rotation. High angular resolution observations of nonmasing material will be required to understand the complex maser distribution in ON 1.



قيم البحث

اقرأ أيضاً

Methanol masers at 6.7 GHz are well known tracers of high-mass star-forming regions. However, their origin is still not clearly understood. We aimed to determine the morphology and velocity structure for a large sample of the maser emission with gene rally lower peak flux densities than those in previous surveys. Using the European VLBI Network we imaged the remaining sources (17) from a sample of sources that were selected from the unbiased survey using the Torun 32 m dish. Together they form a database of a total of 63 source images with high sensitivity, milliarcsecond angular resolution and very good spectral resolution for detailed studies. We studied in detail the properties of the maser clouds and calculated the mean and median values of the projected size (17.4 au and 5.5 au, respectively) as well as the FWHM of the line (0.373 km s$^{-1}$ and 0.315 km s$^{-1}$ for the mean and median values, respectively), testing whether it was consistent with Gaussian profile. We also found maser clouds with velocity gradients (71 per cent) that ranged from 0.005 km s$^{-1}$ au$^{-1}$ to 0.210 km s$^{-1}$ au$^{-1}$. We tested the kinematic models to explain the observed structures of the 6.7 GHz emission. There were targets where the morphology supported the scenario of a rotating and expanding disk or a bipolar outflow. Comparing the interferometric and single-dish spectra we found that, typically, 50-70 per cent of the flux was missing. This phenomena is not strongly related to the distance of the source. The EVN imaging reveals that in the complete sample of 63 sources the ring-like morphology appeared in 17 per cent of sources, arcs were seen in a further 8 per cent, and the structures were complex in 46 per cent cases. The UC HII regions coincide in position in the sky for 13 per cent of the sources. They are related both to extremely high and low luminosity masers from the sample.
We have observed 13 methanol maser sources associated with massive star-forming regions; W3(OH), Mon R2, S 255, W 33A, IRAS 18151-1208, G 24.78+0.08, G 29.95-0.02, IRAS 18556+0136, W 48, OH 43.8-0.1, ON 1, Cep A and NGC 7538 at 6.7 GHz using the Japa nese VLBI Network (JVN). Twelve of the thirteen sources were detected at our longest baseline of $sim$50 M$lambda$, and their images are presented. Seven of them are the first VLBI images at 6.7 GHz. This high detection rate and the small fringe spacing of $sim$4 milli-arcsecond suggest that most of the methanol maser sources have compact structure. Given this compactness as well as the known properties of long-life and small internal-motion, this methanol maser line is suitable for astrometry with VLBI.
In this paper we present new observations of the gravitational lens system JVAS B0218+357 made with a global VLBI network at a frequency of 8.4 GHz. Our maps have an rms noise of 30 microJy/beam and with these we have been able to image much of the e xtended structure of the radio jet in both the A and B images at high resolution (~1 mas). The main use of these maps will be to enable us to further constrain the lens model for the purposes of H0 determination. We are able to identify several sub-components common to both images with the expected parity reversal, including one which we identify as a counter-jet. We have not been successful in detecting either the core of the lensing galaxy or a third image. Using a model of the lensing galaxy we have back-projected both of the images to the source plane and find that they agree well. However, there are small, but significant, differences which we suggest may arise from multi-path scattering in the ISM of the lensing galaxy. We also find an exponent of the radial mass distribution of approximately 1.04, in agreement with lens modelling of published 15-GHz VLBI data. Polarisation maps of each image are presented which show that the distributions of polarisation across images A and B are different. We suggest that this results from Faraday rotation and associated depolarisation in the lensing galaxy.
The first high-resolution (5 mas) VLBI observations of 6.7-GHz methanol masers in DR21(OH)N, a candidate circumstellar disc around a very young massive star, are presented. Previous observations of these masers at 50 mas angular resolution revealed a rotating structure at the position of a candidate massive protostar, with a well-sampled position-velocity diagram suggesting Keplerian rotation. Observations presented here using the European VLBI Network (EVN) have provided the first high angular resolution maps of the masers, providing a test for the disc hypothesis and the Gaussian centroiding technique. The EVN maps have confirmed the shape of the disc and its rotation curve. Weaker maser emission seen previously with MERLIN between the two main spectral peaks is seen in the EVN total power spectrum, but is absent in the cross-power spectrum. This suggests that the spatially extended emission is resolved out by the EVN. The rotating disc is coincident with a Class I massive (proto)star and at the implied centre of an outflow traced by two bow shocks. We discuss the impact of this result on the massive stellar accretion disc hypothesis and on the validity of the centroiding technique to determine the structures of unresolved masers using compact radio interferometric arrays.
22 GHz water and 6.7 GHz methanol masers are usually thought as signposts of early stages of high-mass star formation but little is known about their associations and the physical environments they occur in. The aim was to obtain accurate positions and morphologies of the water maser emission and relate them to the methanol maser emission recently mapped with Very Long Baseline Interferometry. A sample of 31 methanol maser sources was searched for 22 GHz water masers using the VLA and observed in the 6.7 GHz methanol maser line with the 32 m Torun dish simultaneously. Water maser clusters were detected towards 27 sites finding 15 new sources. The detection rate of water maser emission associated with methanol sources was as high as 71%. In a large number of objects (18/21) the structure of water maser is well aligned with that of the extended emission at 4.5 $mu$m confirming the origin of water emission from outflows. The sources with methanol emission with ring-like morphologies, which likely trace a circumstellar disk/torus, either do not show associated water masers or the distribution of water maser spots is orthogonal to the major axis of the ring. The two maser species are generally powered by the same high-mass young stellar object but probe different parts of its environment. The morphology of water and methanol maser emission in a minority of sources is consistent with a scenario that 6.7 GHz methanol masers trace a disc/torus around a protostar while the associated 22 GHz water masers arise in outflows. The majority of sources in which methanol maser emission is associated with the water maser appears to trace outflows. The two types of associations might be related to different evolutionary phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا