ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultimate on-chip quantum amplifier

124   0   0.0 ( 0 )
 نشر من قبل Oleg Astafiev
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report amplification of electromagnetic waves by a single artificial atom in open 1D space. Our three-level artificial atom -- a superconducting quantum circuit -- coupled to a transmission line presents an analog of a natural atom in open space. The system is the most fundamental quantum amplifier whose gain is limited by a spontaneous emission mechanism. The noise performance is determined by the quantum noise revealed in the spectrum of spontaneous emission, also characterized in our experiments.



قيم البحث

اقرأ أيضاً

Amplifiers based on Josephson junctions allow for a fast and noninvasive readout of superconducting qubits. Motivated by the ongoing progress toward the realization of fault-tolerant qubits based on Majorana bound states, we investigate the topologic al counterpart of the Josephson bifurcation amplifier. We predict that the bifurcation dynamics of a topological Josephson junction driven in the appropriate parameter regime may be used as an additional tool to detect the emergence of Majorana bound states.
67 - I. Siddiqi , R. Vijay , F. Pierre 2003
We have constructed a new type of amplifier whose primary purpose is the readout of superconducting quantum bits. It is based on the transition of an RF-driven Josephson junction between two distinct oscillation states near a dynamical bifurcation po int. The main advantages of this new amplifier are speed, high-sensitivity, low back-action, and the absence of on-chip dissipation. Pulsed microwave reflection measurements on nanofabricated Al junctions show that actual devices attain the performance predicted by theory.
We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing of the data acquisition, we observe the Rabi oscillations with a contrast of 74% which is mainly limited by the bandwidth of the JPA and the energy relaxation of the qubit. The observation of quantum jumps between the qubit eigenstates under continuous monitoring indicates the nondestructiveness of the readout scheme.
We create a Josephson parametric amplifier from a transmission line resonator whose inner conductor is made from a series SQUID array. By changing the magnetic flux through the SQUID loops, we are able to adjust the circuits resonance frequency and, consenquently, the center of the amplified band, between 4 and 7.8 GHz. We observe that the amplifier has gains as large as 28 dB and infer that it adds less than twice the input vacuum noise.
74 - Xianjing Zhou 2020
Intrinsic Josephson junctions in high-temperature superconductor Bi2Sr2CaCu2O8 are known for their capability to emit high-power terahertz photons with widely tunable frequencies. Hotspots, as inhomogeneous temperature distributions across the juncti ons, are believed to play a critical role in synchronizing the gauge-invariant phase difference among the junctions, so as to achieve coherent strong emission. Previous optical imaging techniques have indirectly suggested that the hotspot temperature can go higher than the superconductor critical temperature. However, such optical approaches often disturb the local temperature profile and are too slow for device applications. In this paper, we demonstrate an on-chip in situ sensing technique that can precisely quantify the local temperature profile. This is achieved by fabricating a series of micro sensor junctions on top of an emitter junction and measuring the critical current on the sensors versus the bias current applied to the emitter. This fully electronic on-chip design could enable efficient close-loop control of hotspots in BSCCO junctions and significantly enhance the functionality of superconducting terahertz emitters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا