ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical transitions between Landau levels: AA-stacked bilayer graphene

155   0   0.0 ( 0 )
 نشر من قبل Yu-Huang Chiu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-frequency optical excitations of AA-stacked bilayer graphene are investigated by the tight-binding model. Two groups of asymmetric LLs lead to two kinds of absorption peaks resulting from only intragroup excitations. Each absorption peak obeys a single selection rule similar to that of monolayer graphene. The excitation channel of each peak is changed as the field strength approaches a critical strength. This alteration of the excitation channel is strongly related to the setting of the Fermi level. The peculiar optical properties can be attributed to the characteristics of the LL wave functions of the two LL groups. A detailed comparison of optical properties between AA-stacked and AB-stacked bilayer graphenes is also offered. The compared results demonstrate that the optical properties are strongly dominated by the stacking symmetry. Furthermore, the presented results may be used to discriminate AABG from MG, which can be hardly done by STM.



قيم البحث

اقرأ أيضاً

Low-energy Landau levels of AB-stacked zigzag graphene ribbons in the presence of a uniform perpendicular magnetic field (textbf{B}) are investigated by the Peierls coupling tight-binding model. State energies and associated wave functions are domina ted by the textbf{B}-field strength and the $k_z$-dependent interribbon interactions. The occupied valence bands are asymmetric to the unoccupied conduction bands about the Fermi level. Many doubly degenerate Landau levels and singlet curving magnetobands exist along $k_x$ and $k_z$ directions, respectively. Such features are directly reflected in density of states, which exhibits a lot of asymmetric prominent peaks because of 1D curving bands. The $k_z$-dependent interribbon interactions dramatically modify the magnetobands, such as the lift of double degeneracy, the change of state energies, and the production of two groups of curving magnetobands. They also change the characteristics of the wave functions and cause the redistribution of the charge carrier density. The $k_z$-dependent wave functions are further used to predict the selection rule of the optical transition.
The low-frequency magneto-optical properties of bilayer Bernal graphene are studied by the tight-binding model with four most important interlayer interactions taken into account. Since the main features of the wave functions are well depicted, the L andau levels can be divided into two groups based on the characteristics of the wave functions. These Landau levels lead to four categories of absorption peaks in the optical absorption spectra. Such absorption peaks own complex optical selection rules and these rules can be reasonably explained by the characteristics of the wave functions. In addition, twin-peak structures, regular frequency-dependent absorption rates and complex field-dependent frequencies are also obtained in this work. The main features of the absorption peaks are very different from those in monolayer graphene and have their origin in the interlayer interactions.
We uncover a new type of magic-angle phenomena when an AA-stacked graphene bilayer is twisted relative to another graphene system with band touching. In the simplest case this constitutes a trilayer system formed by an AA-stacked bilayer twisted rela tive to a single layer of graphene. We find multiple anisotropic Dirac cones coexisting in such twisted multilayer structures at certain angles, which we call Dirac magic. We trace the origin of Dirac magic angles to the geometric structure of the twisted AA-bilayer Dirac cones relative to the other band-touching spectrum in the moire reciprocal lattice. The anisotropy of the Dirac cones and a concomitant cascade of saddle points induce a series of topological Lifshitz transitions that can be tuned by the twist angle and perpendicular electric field. We discuss the possibility of direct observation of Dirac magic as well as its consequences for the correlated states of electrons in this moire system.
We report on the far-infrared magnetospectroscopy of HgTe quantum wells with inverted band ordering at different electron concentrations. We particularly focus on optical transitions from zero-mode Landau levels, which split from the edges of electro n-like and hole-like bands. We observe a pronounced dependence of the transition energies on the electron concentration varied by persistent photoconductivity effect. This is striking evidence that in addition to the already well-documented crystalline and interface asymmetries, electron-electron interactions also have a significant impact on the usual behavior of the optical transitions from zero mode Landau levels.
We report a multiband transport study of bilayer graphene at high carrier densities. Employing a poly(ethylene)oxide-CsClO$_4$ solid polymer electrolyte gate we demonstrate the filling of the high energy subbands in bilayer graphene samples at carrie r densities $|n|geq2.4times 10^{13}$ cm$^{-2}$. We observe a sudden increase of resistance and the onset of a second family of Shubnikov de Haas (SdH) oscillations as these high energy subbands are populated. From simultaneous Hall and magnetoresistance measurements together with SdH oscillations in the multiband conduction regime, we deduce the carrier densities and mobilities for the higher energy bands separately and find the mobilities to be at least a factor of two higher than those in the low energy bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا