ترغب بنشر مسار تعليمي؟ اضغط هنا

Carrier recombination dynamics in InGaN/GaN multiple quantum wells

146   0   0.0 ( 0 )
 نشر من قبل Carlos Silva
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have mesured the carrier recombination dynamics in InGaN/GaN multiple quantum wells over an unprecedented range in intensity. We find that at times shorter than 30,ns, they follow an exponential form, and a power law at times longer than 1,$mu$s. To explain these biphasic dynamics, we propose a simple three-level model where a charge-separated state interplays with the radiative state through charge transfer following a tunneling mechanism. We show how the distribution of distances in charge-separated states controls the dynamics at long time. Our results imply that charge recombination happens on nearly-isolated clusters of localization centers.



قيم البحث

اقرأ أيضاً

Localization lengths of the electrons and holes in InGaN/GaN quantum wells have been calculated using numerical solutions of the effective mass Schrodinger equation. We have treated the distribution of indium atoms as random and found that the result ant fluctuations in alloy concentration can localize the carriers. By using a locally varying indium concentration function we have calculated the contribution to the potential energy of the carriers from band gap fluctuations, the deformation potential and the spontaneous and piezoelectric fields. We have considered the effect of well width fluctuations and found that these contribute to electron localization, but not to hole localization. We also simulate low temperature photoluminescence spectra and find good agreement with experiment.
A type-II InAs/AlAs$_{0.16}$Sb$_{0.84}$ multiple-quantum well sample is investigated for the photoexcited carrier dynamics as a function of excitation photon energy and lattice temperature. Time-resolved measurements are performed using a near-infrar ed pump pulse, with photon energies near to and above the band gap, probed with a terahertz probe pulse. The transient terahertz absorption is characterized by a multi-rise, multi-decay function that captures long-lived decay times and a metastable state of for an excess-photon energy of $>100$ meV. For sufficient excess-photon energy, excitation of the metastable state is followed by a transition to the long-lived states. Excitation dependence of the long-lived states map onto a near-direct band gap ($E{_g}$) density of states with an Urbach tail below $E{_g}$. As temperature increases, the long-lived decay times increase $<E{_g}$, due to the increased phonon interaction of the unintentional defect states, and by phonon stabilization of the hot carriers $>E{_g}$. Additionally, Auger (and/or trap-assisted Auger) scattering above the onset of the plateau may also contribute to longer hot-carrier lifetimes. Meanwhile, the initial decay component shows strong dependence on excitation energy and temperature, reflecting the complicated initial transfer of energy between valence-band and defect states, indicating methods to further prolong hot carriers for technological applications.
We demonstrate a series of InGaN/GaN double quantum well nanostructure elements. We grow a layer of 2 {mu}m undoped GaN template on top of a (0001)-direction sapphire substrate. A 100 nm SiO2 thin film is deposited on top as a masking pattern layer. This layer is then covered with a 300 nm aluminum layer as the anodic aluminum oxide (AAO) hole pattern layer. After oxalic acid etching, we transfer the hole pattern from the AAO layer to the SiO2 layer by reactive ion etching. Lastly, we utilize metal-organic chemical vapor deposition to grow GaN nanorods approximately 1.5 {mu}m in size. We then grow two layers of InGaN/GaN double quantum wells on the semi-polar face of the GaN nanorod substrate under different temperatures. We then study the characteristics of the InGaN/GaN quantum wells formed on the semi-polar faces of GaN nanorods. We report the following findings from our study: first, using SiO2 with repeating hole pattern, we are able to grow high-quality GaN nanorods with diameters of approximately 80-120 nm; second, photoluminescence (PL) measurements enable us to identify Fabry-Perot effect from InGaN/GaN quantum wells on the semi-polar face. We calculate the quantum wells cavity thickness with obtained PL measurements. Lastly, high resolution TEM images allow us to study the lattice structure characteristics of InGaN/GaN quantum wells on GaN nanorod and identify the existence of threading dislocations in the lattice structure that affects the GaN nanorods growth mechanism.
We present a detailed theoretical analysis of the electronic and optical properties of c-plane InGaN/GaN quantum well structures with In contents ranging from 5% to 25%. Special attention is paid to the relevance of alloy induced carrier localization effects to the green gap problem. Studying the localization length and electron-hole overlaps at low and elevated temperatures, we find alloy-induced localization effects are crucial for the accurate description of InGaN quantum wells across the range of In content studied. However, our calculations show very little change in the localization effects when moving from the blue to the green spectral regime; i.e. when the internal quantum efficiency and wall plug efficiencies reduce sharply, for instance, the in-plane carrier separation due to alloy induced localization effects change weakly. We conclude that other effects, such as increased defect densities, are more likely to be the main reason for the green gap problem. This conclusion is further supported by our finding that the electron localization length is large, when compared to that of the holes, and changes little in the In composition range of interest for the green gap problem. Thus electrons may become increasingly susceptible to an increased (point) defect density in green emitters and as a consequence the nonradiative recombination rate may increase.
We report a comprehensive study of ultrafast carrier dynamics in single crystals of multiferroic BiFeO$_{3}$. Using femtosecond optical pump-probe spectroscopy, we find that the photoexcited electrons relax to the conduction band minimum through elec tron-phonon coupling with a $sim$1 picosecond time constant that does not significantly change across the antiferromagnetic transition. Photoexcited electrons subsequently leave the conduction band and primarily decay via radiative recombination, which is supported by photoluminescence measurements. We find that despite the coexisting ferroelectric and antiferromagnetic orders in BiFeO$_{3}$, the intrinsic nature of this charge-transfer insulator results in carrier relaxation similar to that observed in bulk semiconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا