ﻻ يوجد ملخص باللغة العربية
Motivated by a recent experiment on volborthite, a typical spin-$1/2$ antiferromagnet with a kagom{e} lattice structure, we study the magnetization process of a classical Heisenberg model on a spatially distorted kagom{e} lattice using the Monte Carlo (MC) method. We find a distortion-induced magnetization step at low temperatures and low magnetic fields. The magnitude of this step is given by $Delta m_z=left|1-alpharight|/3alpha$ at zero temperature, where $alpha$ denotes the spatial anisotropy in exchange constants. The magnetization step signals a first-order transition at low temperatures, between two phases distinguished by distinct and well-developed short-range spin correlations, one characterized by spin alignment of a local $120^{circ}$ structure with a $sqrt{3}timessqrt{3}$ period, and the other by a partially spin-flopped structure. We point out the relevance of our results to the unconventional steps observed in volborthite.
In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies [Hiroi et al.,2001]. It has been suggested that the magnetic properties of this material are described by a spin-1/2 Hei
We discuss the ground-state degeneracy of spin-$1/2$ kagome-lattice quantum antiferromagnets on magnetization plateaus by employing two complementary methods: the adiabatic flux insertion in closed boundary conditions and a t Hooft anomaly argument o
We clarify the existence of several magnetization plateaux for the kagome $S=1/2$ antiferromagnetic Heisenberg model in a magnetic field. Using approximate or exact localized magnon eigenstates, we are able to describe in a similar manner the plateau
We report magnetization and neutron scattering measurements down to 60 mK on a new family of Fe based kagome antiferromagnets, in which a strong local spin anisotropy combined with a low exchange path network connectivity lead to domain walls interse
We present results of ferromagnetic resonance (FMR) experiments and micromagnetic simulations for a distorted, 2D Kagome artificial spin ice. The distorted structure is created by continuously modulating the 2D primitive lattice translation vectors o