ﻻ يوجد ملخص باللغة العربية
Linear polymers are represented as chains of hopping reptons and their motion is described as a stochastic process on a lattice. This admittedly crude approximation still catches essential physics of polymer motion, i.e. the universal properties as function of polymer length. More than the static properties, the dynamics depends on the rules of motion. Small changes in the hopping probabilities can result in different universal behavior. In particular the cross-over between Rouse dynamics and reptation is controlled by the types and strength of the hoppings that are allowed. The properties are analyzed using a calculational scheme based on an analogy with one-dimensional spin systems. It leads to accurate data for intermediately long polymers. These are extrapolated to arbitrarily long polymers, by means of finite-size-scaling analysis. Exponents and cross-over functions for the renewal time and the diffusion coefficient are discussed for various types of motion.
We study a model of self propelled particles exhibiting run and tumble dynamics on lattice. This non-Brownian diffusion is characterised by a random walk with a finite persistence length between changes of direction, and is inspired by the motion of
Recently, it has been proposed that the adsorption transition for a single polymer in dilute solution, modeled by lattice walks in three dimensions, is not universal with respect to inter-monomer interactions. It has also been conjectured that key cr
We develop a theoretical description of the topological disentanglement occurring when torus knots reach the ends of a semi-flexible polymer under tension. These include decays into simpler knots and total unknotting. The minimal number of crossings
Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and inves
In the usual statistical model of a dense polymer (a single space-filling loop on a lattice) in two dimensions the loop does not cross itself. We modify this by including intersections in which {em three} lines can cross at the same point, with some