ﻻ يوجد ملخص باللغة العربية
We give an expository review of applications of computational algebraic statistics to design and analysis of fractional factorial experiments based on our recent works. For the purpose of design, the techniques of Grobner bases and indicator functions allow us to treat fractional factorial designs without distinction between regular designs and non-regular designs. For the purpose of analysis of data from fractional factorial designs, the techniques of Markov bases allow us to handle discrete observations. Thus the approach of computational algebraic statistics greatly enlarges the scope of fractional factorial designs.
In this paper, we introduce the fundamental notion of a Markov basis, which is one of the first connections between commutative algebra and statistics. The notion of a Markov basis is first introduced by Diaconis and Sturmfels (1998) for conditional
The current and upcoming generation of Very Large Volume Neutrino Telescopes---collecting unprecedented quantities of neutrino events---can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass or
We present some optimal criteria to evaluate model-robustness of non-regular two-level fractional factorial designs. Our method is based on minimizing the sum of squares of all the off-diagonal elements in the information matrix, and considering expe
In repeated measures factorial designs involving clustered units, parametric methods such as linear mixed effects models are used to handle within subject correlations. However, assumptions of these parametric models such as continuity and normality
It has been shown in the literature that effective gravitational constants, which are derived from Verlindes formalism, can be used to introduce the Tsallis and Kaniadakis statistics. This method provides a simple alternative to the usual procedure n