ﻻ يوجد ملخص باللغة العربية
A flux qubit biased at its symmetry point shows a minimum in the energy splitting (the gap), providing protection against flux noise. We have fabricated a qubit whose gap can be tuned fast and have coupled this qubit strongly to an LC oscillator. We show full spectroscopy of the qubit-resonator system and generate vacuum Rabi oscillations. When the gap is made equal to the oscillator frequency $ u_{osc}$ we find the strongest qubit-resonator coupling ($g/hsim0.1 u_{rm osc}$). Here being at resonance coincides with the optimal coherence of the symmetry point. Significant further increase of the coupling is possible.
We derive the Hamiltonian of a superconducting circuit that comprises a single-Josephson-junction flux qubit and an LC oscillator. If we keep the qubits lowest two energy levels, the derived circuit Hamiltonian takes the form of the quantum Rabi Hami
Under resonant irradiation, a quantum system can undergo coherent (Rabi) oscillations in time. We report evidence for such oscillations in a _continuously_ observed three-Josephson-junction flux qubit, coupled to a high-quality tank circuit tuned to
We demonstrate high-contrast state detection of a superconducting flux qubit. Detection is realized by probing the microwave transmission of a nonlinear resonator, based on a SQUID. Depending on the driving strength of the resonator, the detector can
We present a superconducting qubit for the circuit quantum electrodynamics architecture that has a tunable coupling strength g. We show that this coupling strength can be tuned from zero to values that are comparable with other superconducting qubits
We discuss a practical design for tunably coupling a pair of flux qubits via the quantum inductance of a third high-frequency qubit. The design is particularly well suited for realizing a recently proposed microwave-induced parametric coupling scheme