ترغب بنشر مسار تعليمي؟ اضغط هنا

Can Neutron stars constrain Dark Matter?

180   0   0.0 ( 0 )
 نشر من قبل Peter Tinyakov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that observations of old neutron stars can impose constraints on dark matter candidates even with very small elastic or inelastic cross section, and self-annihilation cross section. We find that old neutron stars close to the galactic center or in globular clusters can maintain a surface temperature that could in principle be detected. Due to their compactness, neutron stars can acrete WIMPs efficiently even if the WIMP-to-nucleon cross section obeys the current limits from direct dark matter searches, and therefore they could constrain a wide range of dark matter candidates.



قيم البحث

اقرأ أيضاً

If dark matter is mainly composed of axions, the density distribution can be nonuniformly distributed, being clumpy instead. By solving the Einstein-Klein-Gordon system of a scalar field with the potential energy density of an axionlike particle, we obtain the maximum mass of the self-gravitating system made of axions, called axion stars. The collision of axion stars with neutron stars may release the energy of axions due to the conversion of axions into photons in the presence of the neutron stars magnetic field. We estimate the energy release and show that it should be much less than previous estimates.Future data from femtolensing should strongly constrain this scenario.
Galaxies are often used as tracers of the large scale structure (LSS) to measure the Integrated Sachs-Wolfe effect (ISW) by cross-correlating the galaxy survey maps with the Cosmic Microwave Background (CMB) map. We use the Cosmic Infrared Background (CIB) as a tracer of the LSS to perform a theoretical CIB-CMB cross-correlation to measure the ISW for different Planck HFI frequencies. We discuss the detectability of this ISW signal using a Signal-to-noise ratio analysis and find that the ISW detected this way can provide us with the highest SNR for a single tracer ranging from 5 to 6.7 (maximum being for 857 GHz) with the CIB and CMB maps extracted over the whole sky. A Fisher matrix analysis showed that this measurement of the ISW can improve the constraints on the cosmological parameters; especially the equation of state of the dark energy $w$ by $sim 47%$. Performing a more realistic analysis including the galactic dust residuals in the CIB maps over realistic sky fractions shows that the dust power spectra dominate over the CIB power spectra at $ell < 100$ and ISW cant be detected with high SNR. We perform the cross-correlation on the existing CIB-CMB maps over $sim 11%$ of the sky in the southern hemisphere and find that the ISW is not detected with the existing CIB maps over such small sky fractions.
Dark Matter constitutes most of the matter in the presently accepted cosmological model for our Universe. The extreme conditions of ordinary baryonic matter, namely high density and compactness, in Neutron Stars make these objects suitable to gravita tionally accrete such a massive component provided interaction strength between both, luminous and dark sectors, at current experimental level of sensitivity. We consider several different DM phenomenological models from the myriad of those presently allowed. In this contribution we review astrophysical aspects of interest in the interplay of ordinary matter and a fermionic light Dark Matter component. We focus in the interior nuclear medium in the core and external layers, i.e. the crust, discussing the impact of a novel dark sector in relevant stellar quantities for (heat) energy transport such as thermal conductivity or emissivities.
We consider the implications of an ultra-light fermionic dark matter candidate that carries baryon number. This naturally arises if dark matter has a small charge under standard model baryon number whilst having an asymmetry equal and opposite to tha t in the visible universe. A prototypical model is a theory of dark baryons charged under a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is naturally at nuclear density, allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark matter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pressure of the neutron star, which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices.
Neutron Stars (NSs) are compact stellar objects that are stable solutions in General Relativity. Their internal structure is usually described using an equation of state that involves the presence of ordinary matter and its interactions. However ther e is now a large consensus that an elusive sector of matter in the Universe, described as dark matter, remains as yet undiscovered. In such a case, NSs should contain both, baryonic and dark matter. We argue that depending on the nature of the dark matter and in certain circumstances, the two matter components would form a mixture inside NSs that could trigger further changes, some of them observable. The very existence of NSs constrains the nature and interactions of dark matter in the Universe
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا