ﻻ يوجد ملخص باللغة العربية
We present the Spitzer/Infrared Spectrograph spectrum of the main-sequence star HD165014, which is a warm (>~ 200 K) debris disk candidate discovered by the AKARI All-Sky Survey. The star possesses extremely large excess emission at wavelengths longer than 5 mum. The detected flux densities at 10 and 20 mum are ~ 10 and ~ 30 times larger than the predicted photospheric emission, respectively. The excess emission is attributable to the presence of circumstellar warm dust. The dust temperature is estimated as 300-750 K, corresponding to the distance of 0.7-4.4 AU from the central star. Significant fine-structured features are seen in the spectrum and the peak positions are in good agreement with those of crystalline enstatite. Features of crystalline forsterite are not significantly seen. HD165014 is the first debris disk sample that has enstatite as a dominant form of crystalline silicate rather than forsterite. Possible formation of enstatite dust from differentiated parent bodies is suggested according to the solar system analog. The detection of an enstatite-rich debris disk in the current study suggests the presence of large bodies and a variety of silicate dust processing in warm debris disks.
(Abridged) Debris disks trace remnant reservoirs of leftover planetesimals in planetary systems. A handful of warm debris disks have been discovered in the last years, where emission in excess starts in the mid-infrared. An interesting subset within
A warm/hot dust component (at temperature $>$ 300K) has been detected around $sim$ 20% of stars. This component is called exozodiacal dust as it presents similarities with the zodiacal dust detected in our Solar System, even though its physical prope
Photometry of the A0 V main-sequence star HD 106797 with AKARI and Gemini/T-ReCS is used to detect excess emission over the expected stellar photospheric emission between 10 and 20 micron, which is best attributed to hot circumstellar debris dust sur
We present the first scattered-light images of the debris disk around 49 ceti, a ~40 Myr A1 main sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in
(abridged) Context. The origin of hot exozodiacal dust and its connection with outer dust reservoirs remains unclear. Aims. We aim to explore the possible connection between hot exozodiacal dust and warm dust reservoirs (> 100 K) in asteroid belts. M