ترغب بنشر مسار تعليمي؟ اضغط هنا

Masses and radii of neutron and quark stars

110   0   0.0 ( 0 )
 نشر من قبل Drago Alessandro
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss new limits on masses and radii of compact stars and we conclude that they can be interpreted as an indication of the existence of two classes of stars: normal compact stars and ultra-compact stars. We estimate the critical mass at which the first configuration collapses into the second.



قيم البحث

اقرأ أيضاً

In this paper, we use a three flavor non-local Nambu--Jona-Lasinio (NJL) model, an~improved effective model of Quantum Chromodynamics (QCD) at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular e mphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars). In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in), the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.
This paper gives an brief overview of the structure of hypothetical strange quarks stars (quark stars, for short), which are made of absolutely stable 3-flavor strange quark matter. Such objects can be either bare or enveloped in thin nuclear crusts, which consist of heavy ions immersed in an electron gas. In contrast to neutron stars, the structure of quark stars is determined by two (rather than one) parameters, the central star density and the density at the base of the crust. If bare, quark stars possess ultra-high electric fields on the order of 10^{18} to 10^{19} V/cm. These features render the properties of quark stars more multifaceted than those of neutron stars and may allow one to observationally distinguish quark stars from neutron stars.
We combine equation of state of dense matter up to twice nuclear saturation density ($n_{rm sat}=0.16, text{fm}^{-3}$) obtained using chiral effective field theory ($chi$EFT), and recent observations of neutron stars to gain insights about the high-d ensity matter encountered in their cores. A key element in our study is the recent Bayesian analysis of correlated EFT truncation errors based on order-by-order calculations up to next-to-next-to-next-to-leading order in the $chi$EFT expansion. We refine the bounds on the maximum mass imposed by causality at high densities, and provide stringent limits on the maximum and minimum radii of $sim1.4,{rm M}_{odot}$ and $sim2.0,{rm M}_{odot}$ stars. Including $chi$EFT predictions from $n_{rm sat}$ to $2,n_{rm sat}$ reduces the permitted ranges of the radius of a $1.4,{rm M}_{odot}$ star, $R_{1.4}$, by $sim3.5, text{km}$. If observations indicate $R_{1.4}<11.2, text{km}$, our study implies that either the squared speed of sound $c^2_{s}>1/2$ for densities above $2,n_{rm sat}$, or that $chi$EFT breaks down below $2,n_{rm sat}$. We also comment on the nature of the secondary compact object in GW190814 with mass $simeq 2.6,{rm M}_{odot}$, and discuss the implications of massive neutron stars $>2.1 ,{rm M}_{odot},(2.6,{rm M}_{odot})$ in future radio and gravitational-wave searches. Some form of strongly interacting matter with $c^2_{s}>0.35, (0.55)$ must be realized in the cores of such massive neutron stars. In the absence of phase transitions below $2,n_{rm sat}$, the small tidal deformability inferred from GW170817 lends support for the relatively small pressure predicted by $chi$EFT for the baryon density $n_{rm B}$ in the range $1-2,n_{rm sat}$. Together they imply that the rapid stiffening required to support a high maximum mass should occur only when $n_{rm B} gtrsim 1.5-1.8,n_{rm sat}$.
Observations to date cannot distinguish neutron stars from self-bound bare quark stars on the basis of their gross physical properties such as their masses and radii alone. However, their surface luminosity and spectral characteristics can be signifi cantly different. Unlike a normal neutron star, a bare quark star can emit photons from its surface at super-Eddington luminosities for an extended period of time. We present a calculation of the photon bremsstrahlung rate from the bare quark stars surface, and indicate improvements that are required for a complete characterization of the spectrum. The observation of this distinctive photon spectrum would constitute an unmistakable signature of a strange quark star and shed light on color superconductivity at stellar densities.
Depending on mass and rotational frequency, gravity compresses the matter in the core regions of neutron stars to densities that are several times higher than the density of ordinary atomic nuclei. At such huge densities atoms themselves collapse, an d atomic nuclei are squeezed so tightly together that new particle states may appear and novel states of matter, foremost quark matter, may be created. This feature makes neutron stars superb astrophysical laboratories for a wide range of physical studies. And with observational data accumulating rapidly from both orbiting and ground based observatories spanning the spectrum from X-rays to radio wavelengths, there has never been a more exiting time than today to study neutron stars. The Hubble Space Telescope and X-ray satellites such as Chandra and XMM-Newton in particular have proven especially valuable. New astrophysical instruments such as the Five hundred meter Aperture Spherical Telescope (FAST), the square kilometer Array (skA), Fermi Gamma-ray Space Telescope (formerly GLAST), and possibly the International X-ray Observatory (now Advanced Telescope for High ENergy Astrophysics, ATHENA) promise the discovery of tens of thousands of new non-rotating and rotating neutron stars. The latter are referred to as pulsars. This paper provides a short overview of the impact of rotation on the structure and composition of neutron stars. Observational properties, which may help to shed light on the core composition of neutron stars--and, hence, the properties of ultra-dense matter--are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا