ﻻ يوجد ملخص باللغة العربية
We consider a quadrature-based eigensolver to find eigenpairs of Hermitian matrices arising in lattice quantum chromodynamics. To reduce the computational cost for finding eigenpairs of such Hermitian matrices, we propose a new technique for solving shifted linear systems with complex shifts by means of the shifted CG method. Furthermore using integration paths along horizontal lines corresponding to the real axis of the complex plane, the number of iterations for the shifted CG method is also reduced. Some numerical experiments illustrate the accuracy and efficiency of the proposed method by comparison with a conventional method.
We study the use of Krylov subspace recycling for the solution of a sequence of slowly-changing families of linear systems, where each family consists of shifted linear systems that differ in the coefficient matrix only by multiples of the identity.
Many Krylov subspace methods for shifted linear systems take advantage of the invariance of the Krylov subspace under a shift of the matrix. However, exploiting this fact in the non-Hermitian case introduces restrictions; e.g., initial residuals must
It is well known that the block Krylov subspace solvers work efficiently for some cases of the solution of differential equations with multiple right-hand sides. In lattice QCD calculation of physical quantities on a given configuration demands us to
There exist two methods to study two-baryon systems in lattice QCD: the direct method which extracts eigenenergies from the plateaux of the temporal correlator and the HAL QCD method which extracts observables from the non-local potential associated
We study the thermodynamics of the SU(3) gauge theory using the fixed-scale approach with shifted boundary conditions. The fixed-scale approach can reduce the numerical cost of the zero-temperature part in the equation of state calculations, while th