ترغب بنشر مسار تعليمي؟ اضغط هنا

A quadrature-based eigensolver with a Krylov subspace method for shifted linear systems for Hermitian eigenproblems in lattice QCD

204   0   0.0 ( 0 )
 نشر من قبل Hiroshi Ohno
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a quadrature-based eigensolver to find eigenpairs of Hermitian matrices arising in lattice quantum chromodynamics. To reduce the computational cost for finding eigenpairs of such Hermitian matrices, we propose a new technique for solving shifted linear systems with complex shifts by means of the shifted CG method. Furthermore using integration paths along horizontal lines corresponding to the real axis of the complex plane, the number of iterations for the shifted CG method is also reduced. Some numerical experiments illustrate the accuracy and efficiency of the proposed method by comparison with a conventional method.



قيم البحث

اقرأ أيضاً

We study the use of Krylov subspace recycling for the solution of a sequence of slowly-changing families of linear systems, where each family consists of shifted linear systems that differ in the coefficient matrix only by multiples of the identity. Our aim is to explore the simultaneous solution of each family of shifted systems within the framework of subspace recycling, using one augmented subspace to extract candidate solutions for all the shifted systems. The ideal method would use the same augmented subspace for all systems and have fixed storage requirements, independent of the number of shifted systems per family. We show that a method satisfying both requirements cannot exist in this framework. As an alternative, we introduce two schemes. One constructs a separate deflation space for each shifted system but solves each family of shifted systems simultaneously. The other builds only one recycled subspace and constructs approximate corrections to the solutions of the shifted systems at each cycle of the iterative linear solver while only minimizing the base system residual. At convergence of the base system solution, we apply the method recursively to the remaining unconverged systems. We present numerical examples involving systems arising in lattice quantum chromodynamics.
203 - Kirk M. Soodhalter 2014
Many Krylov subspace methods for shifted linear systems take advantage of the invariance of the Krylov subspace under a shift of the matrix. However, exploiting this fact in the non-Hermitian case introduces restrictions; e.g., initial residuals must be collinear and this collinearity must be maintained at restart. Thus we cannot simultaneously solve shifted systems with unrelated right-hand sides using this strategy, and all shifted residuals cannot be simultaneously minimized over a Krylov subspace such that collinearity is maintained. It has been shown that this renders them generally incompatible with techniques of subspace recycling [Soodhalter et al. APNUM 14]. This problem, however, can be overcome. By interpreting a family of shifted systems as one Sylvester equation, we can take advantage of the known shift invariance of the Krylov subspace generated by the Sylvester operator. Thus we can simultaneously solve all systems over one block Krylov subspace using FOM or GMRES type methods, even when they have unrelated right-hand sides. Because residual collinearity is no longer a requirement at restart, these methods are fully compatible with subspace recycling techniques. Furthermore, we realize the benefits of block sparse matrix operations which arise in the context of high-performance computing applications. In this paper, we discuss exploiting this Sylvester equation point of view which has yielded methods for shifted systems which are compatible with unrelated right-hand sides. From this, we propose a recycled GMRES method for simultaneous solution of shifted systems.Numerical experiments demonstrate the effectiveness of the methods.
107 - T.Sakurai , H.Tadano , Y.Kuramashi 2009
It is well known that the block Krylov subspace solvers work efficiently for some cases of the solution of differential equations with multiple right-hand sides. In lattice QCD calculation of physical quantities on a given configuration demands us to solve the Dirac equation with multiple sources. We show that a new block Krylov subspace algorithm recently proposed by the authors reduces the computational cost significantly without loosing numerical accuracy for the solution of the O(a)-improved Wilson-Dirac equation.
There exist two methods to study two-baryon systems in lattice QCD: the direct method which extracts eigenenergies from the plateaux of the temporal correlator and the HAL QCD method which extracts observables from the non-local potential associated with the tempo-spatial correlator. Although the two methods should give the same results theoretically, qualitatively different results have been reported. Recently, we pointed out that the separation of the ground state from the excited states is crucial to obtain sensible results in the former, while both states provide useful signals in the latter. In this paper, we identify the contribution of each state in the direct method by decomposing the two-baryon correlators into the finite-volume eigenmodes obtained from the HAL QCD method. We consider the $XiXi$ system in the $^1$S$_0$ channel at $m_pi = 0.51$ GeV in 2+1 flavor lattice QCD using the wall and smeared quark sources. We demonstrate that the pseudo-plateau at early time slices (t = 1~2 fm) from the smeared source in the direct method indeed originates from the contamination of the excited states, and the true plateau with the ground state saturation is realized only at t > 5~15 fm corresponding to the inverse of the lowest excitation energy. We also demonstrate that the two-baryon operator can be optimized by utilizing the finite-volume eigenmodes, so that (i) the finite-volume energy spectra from the HAL QCD method agree with those from the optimized temporal correlator and (ii) the correct spectra would be accessed in the direct method only if highly optimized operators are employed. Thus we conclude that the long-standing issue on the consistency between the Luschers finite volume method and the HAL QCD method for two baryons is now resolved: They are consistent with each other quantitatively only if the excited contamination is properly removed in the former.
198 - Takashi Umeda 2014
We study the thermodynamics of the SU(3) gauge theory using the fixed-scale approach with shifted boundary conditions. The fixed-scale approach can reduce the numerical cost of the zero-temperature part in the equation of state calculations, while th e number of possible temperatures is limited by the integer $N_t$, which represents the temporal lattice extent. The shifted boundary conditions can overcome such a limitation while retaining the advantages of the fixed-scale approach. Therefore, our approach enables the investigation of not only the equation of state in detail, but also the calculation of the critical temperature with increased precision even with the fixed-scale approach. We also confirm numerically that the boundary conditions suppress the lattice artifact of the equation of state, which has been confirmed in the non-interacting limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا