ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributions of order patterns of interval maps

99   0   0.0 ( 0 )
 نشر من قبل Aaron Abrams
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A permutation $sigma$ describing the relative orders of the first $n$ iterates of a point $x$ under a self-map $f$ of the interval $I=[0,1]$ is called an emph{order pattern}. For fixed $f$ and $n$, measuring the points $xin I$ (according to Lebesgue measure) that generate the order pattern $sigma$ gives a probability distribution $mu_n(f)$ on the set of length $n$ permutations. We study the distributions that arise this way for various classes of functions $f$. Our main results treat the class of measure preserving functions. We obtain an exact description of the set of realizable distributions in this case: for each $n$ this set is a union of open faces of the polytope of flows on a certain digraph, and a simple combinatorial criterion determines which faces are included. We also show that for general $f$, apart from an obvious compatibility condition, there is no restriction on the sequence ${mu_n(f)}$ for $n=1,2,...$. In addition, we give a necessary condition for $f$ to have emph{finite exclusion type}, i.e., for there to be finitely many order patterns that generate all order patterns not realized by $f$. Using entropy we show that if $f$ is piecewise continuous, piecewise monotone, and either ergodic or with points of arbitrarily high period, then $f$ cannot have finite exclusion type. This generalizes results of S. Elizalde.



قيم البحث

اقرأ أيضاً

A systematic study of avoidance of mesh patterns of length 2 was conducted by Hilmarsson et al., where 25 out of 65 non-equivalent cases were solved. In this paper, we give 27 distribution results for these patterns including 14 distributions for whi ch avoidance was not known. Moreover, for the unsolved cases, we prove an equidistribution result (out of 6 equidistribution results we prove in total), and conjecture 6 more equidistributions. Finally, we find seemingly unknown distribution of the well known permutation statistic ``strict fixed point, which plays a key role in many of our enumerative results. This paper is the first systematic study of distributions of mesh patterns. Our techniques to obtain the results include, but are not limited to, obtaining functional relations for generating functions, and finding recurrence relations and bijections.
Branden and Claesson introduced mesh patterns to provide explicit expansions for certain permutation statistics as linear combinations of (classical) permutation patterns. The first systematic study of avoidance of mesh patterns was conducted by Hilm arsson et al., while the first systematic study of the distribution of mesh patterns was conducted by the first two authors. In this paper, we provide far-reaching generalizations for 8 known distribution results and 5 known avoidance results related to mesh patterns by giving distribution or avoidance formulas for certain infinite families of mesh patterns in terms of distribution or avoidance formulas for smaller patterns. Moreover, as a corollary to a general result, we find the distribution of one more mesh pattern of length 2.
We study repetitions in infinite words coding exchange of three intervals with permutation (3,2,1), called 3iet words. The language of such words is determined by two parameters $varepsilon,ell$. We show that finiteness of the index of 3iet words is equivalent to boundedness of the coefficients of the continued fraction of $varepsilon$. In this case we also give an upper and lower estimate on the index of the corresponding 3iet word.
In this paper, we consider the possible types of regular maps of order $2^n$, where the order of a regular map is the order of automorphism group of the map. For $n le 11$, M. Conder classified all regular maps of order $2^n$. It is easy to classify regular maps of order $2^n$ whose valency or covalency is $2$ or $2^{n-1}$. So we assume that $n geq 12$ and $2leq s,tleq n-2$ with $sleq t$ to consider regular maps of order $2^n$ with type ${2^s, 2^t}$. We show that for $s+tleq n$ or for $s+t>n$ with $s=t$, there exists a regular map of order $2^n$ with type ${2^s, 2^t}$, and furthermore, we classify regular maps of order $2^n$ with types ${2^{n-2},2^{n-2}}$ and ${2^{n-3},2^{n-3}}$. We conjecture that, if $s+t>n$ with $s<t$, then there is no regular map of order $2^n$ with type ${2^s, 2^t}$, and we confirm the conjecture for $t=n-2$ and $n-3$.
In this note we generalise some of the work of Klarner on free semigroups of affine maps acting on the real line by using a classical approach from geometric group theory (the Ping-Pong lemma). We also investigate the boundaries within which Klarners necessary condition for a semigroup to be related is applicable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا