ﻻ يوجد ملخص باللغة العربية
A permutation $sigma$ describing the relative orders of the first $n$ iterates of a point $x$ under a self-map $f$ of the interval $I=[0,1]$ is called an emph{order pattern}. For fixed $f$ and $n$, measuring the points $xin I$ (according to Lebesgue measure) that generate the order pattern $sigma$ gives a probability distribution $mu_n(f)$ on the set of length $n$ permutations. We study the distributions that arise this way for various classes of functions $f$. Our main results treat the class of measure preserving functions. We obtain an exact description of the set of realizable distributions in this case: for each $n$ this set is a union of open faces of the polytope of flows on a certain digraph, and a simple combinatorial criterion determines which faces are included. We also show that for general $f$, apart from an obvious compatibility condition, there is no restriction on the sequence ${mu_n(f)}$ for $n=1,2,...$. In addition, we give a necessary condition for $f$ to have emph{finite exclusion type}, i.e., for there to be finitely many order patterns that generate all order patterns not realized by $f$. Using entropy we show that if $f$ is piecewise continuous, piecewise monotone, and either ergodic or with points of arbitrarily high period, then $f$ cannot have finite exclusion type. This generalizes results of S. Elizalde.
A systematic study of avoidance of mesh patterns of length 2 was conducted by Hilmarsson et al., where 25 out of 65 non-equivalent cases were solved. In this paper, we give 27 distribution results for these patterns including 14 distributions for whi
Branden and Claesson introduced mesh patterns to provide explicit expansions for certain permutation statistics as linear combinations of (classical) permutation patterns. The first systematic study of avoidance of mesh patterns was conducted by Hilm
We study repetitions in infinite words coding exchange of three intervals with permutation (3,2,1), called 3iet words. The language of such words is determined by two parameters $varepsilon,ell$. We show that finiteness of the index of 3iet words is
In this paper, we consider the possible types of regular maps of order $2^n$, where the order of a regular map is the order of automorphism group of the map. For $n le 11$, M. Conder classified all regular maps of order $2^n$. It is easy to classify
In this note we generalise some of the work of Klarner on free semigroups of affine maps acting on the real line by using a classical approach from geometric group theory (the Ping-Pong lemma). We also investigate the boundaries within which Klarners