ترغب بنشر مسار تعليمي؟ اضغط هنا

Cyclotron harmonics in opacities of isolated neutron star atmospheres

177   0   0.0 ( 0 )
 نشر من قبل Alexander Potekhin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Some of X-ray dim isolated neutron stars (XDINS) and central compact objects in supernova remnants (CCO) show absorption features in their thermal soft X-ray spectra. It has been hypothesized that these features could be due to the periodic peaks in free-free absorption opacities, caused by either Landau quantization of electron motion in magnetic fields B<10^{11} G or analogous quantization of ion motion in magnetic fields B>10^{13} G. Here, I review the physics behind cyclotron quantum harmonics in free-free photoabsorption, discuss different approximations for their calculation, and explain why the ion cyclotron harmonics (beyond the fundamental) cannot be observed.



قيم البحث

اقرأ أيضاً

Material ejected during (or immediately following) the merger of two neutron stars may assemble into heavy elements by the r-process. The subsequent radioactive decay of the nuclei can power electromagnetic emission similar to, but significantly dimm er than, an ordinary supernova. Identifying such events is an important goal of future transient surveys, offering new perspectives on the origin of r-process nuclei and the astrophysical sources of gravitational waves. Predictions of the transient light curves and spectra, however, have suffered from the uncertain optical properties of heavy ions. Here we consider the opacity of expanding r-process material and argue that it is dominated by line transitions from those ions with the most complex valence electron structure, namely the lanthanides. For a few representative ions, we run atomic structure models to calculate radiative data for tens of millions of lines. We find that the resulting r-process opacities are orders of magnitude larger than that of ordinary (e.g., iron-rich) supernova ejecta. Radiative transport calculations using these new opacities indicate that the transient emission should be dimmer and redder than previously thought. The spectra appear pseudo-blackbody, with broad absorption features, and peak in the infrared (~1 micron). We discuss uncertainties in the opacities and attempt to quantify their impact on the spectral predictions. The results have important implications for observational strategies to find and study the radioactively powered electromagnetic counterparts to compact object mergers.
Some isolated neutron stars show harmonically spaced absorption features in their thermal soft X-ray spectra. The interpretation of the features as a cyclotron line and its harmonics has been suggested, but the usual explanation of the harmonics as c aused by relativistic effects fails because the relativistic corrections are extremely small in this case. We suggest that the features correspond to the peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. The peaks arise when the transitions to new Landau levels become allowed with increasing the photon energy; they are strongly enhanced by the square-root singularities in the phase-space density of quantum states in the case when the free (non-quantized) motion is effectively one-dimensional. To explore observable properties of these quantum oscillations, we calculate models of hydrogen neutron star atmospheres with B sim 10^{10} - 10^{11} G (i.e., electron cyclotron energy E_{c,e} = 0.1 - 1 keV) and T_{eff} = 1 - 3 MK. Such conditions are thought to be typical for the so-called central compact objects in supernova remnants, such as 1E 1207.4-5209 in PKS 1209-51/52. We show that observable features at the electron cyclotron harmonics form at moderately large values of the quantization parameter, b_{eff} = E_{c,e}/kT_{eff} = 0.5 - 20. The equivalent widths of the features can reach 100 - 200 eV; they grow with increasing b_{eff} and are lower for higher harmonics.
The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have ex otic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.
122 - X. Chen , W. Wang , Y. M. Tang 2021
Cyclotron line scattering features are detected in a few tens of X-ray pulsars (XRPs) and used as direct indicators of a strong magnetic field at the surface of accreting neutron stars (NSs). In a few cases, cyclotron lines are known to be variable w ith accretion luminosity of XRPs. It is accepted that the observed variations of cyclotron line scattering features are related to variations of geometry and dynamics of accretion flow above the magnetic poles of a NS. A positive correlation between the line centroid energy and luminosity is typical for sub-critical XRPs, where the accretion results in hot spots at the magnetic poles. The negative correlation was proposed to be a specific feature of bright super-critical XRPs, where radiation pressure supports accretion columns above the stellar surface. Cyclotron line in spectra of Be-transient X-ray pulsar GRO J1008-57 is detected at energies from $sim 75 -90$ keV, the highest observed energy of cyclotron line feature in XRPs. We report the peculiar relation of cyclotron line centroid energies with luminosity in GRO J1008-57 during the Type II outburst in August 2017 observed by Insight-HXMT. The cyclotron line energy was detected to be negatively correlated with the luminosity at $3.2times 10^{37},ergs<L<4.2times 10^{37},ergs$, and positively correlated at $Lgtrsim 5times 10^{37},ergs$. We speculate that the observed peculiar behavior of a cyclotron line would be due to variations of accretion channel geometry.
Strong magnetic fields play an important role in powering the emission of neutron stars. Nevertheless a full understanding of the interior configuration of the field remains elusive. In this work, we present General Relativistic MagnetoHydroDynamics simulations of the magnetic field evolution in neutron stars lasting 500 ms (5 Alfven crossing times) and up to resolutions of 0.231 km using Athena++. We explore two different initial conditions, one with purely poloidal magnetic field and the other with a dominant toroidal component, and study the poloidal and toroidal field energies, the growth times of the various instability-driven oscillation modes and turbulence. We find that the purely poloidal setup generates a toroidal field which later decays exponentially reaching 1% of the total magnetic energy, showing no evidence of reaching equilibrium. The initially stronger toroidal field setup, on the other hand, loses up to 20% of toroidal energy and maintains this state till the end of our simulation. We also explore the hypothesis, drawn from previous MHD simulations, that turbulence plays an important role in the quasi equilibrium state. An analysis of the spectra in our higher resolution setups reveal, however, that in most cases we are not observing turbulence at small scales, but rather a noisy velocity field inside the star. We also observe that the majority of the magnetic energy gets dissipated as heat increasing the internal energy of the star, while a small fraction gets radiated away as electromagnetic radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا