We report on an update of the test on the rotation of the plane of linear polarization for light traveling over cosmological distances, using a comparison between the measured direction of the UV polarization in 8 radio galaxies at z>2 and the direction predicted by the model of scattering of anisotropic nuclear radiation, which explains the polarization. No rotation is detected within a few degrees for each galaxy and, if the rotation does not depend on direction, then the all-sky-average rotation is constrained to be theta = -0.8 +/- 2.2. We discuss the relevance of this result for constraining cosmological birefringence, when this is caused by the interaction with a cosmological pseudo-scalar field or by the presence of a Cherns-Simons term.