ترغب بنشر مسار تعليمي؟ اضغط هنا

Limits on Cosmological Birefringence from the Ultraviolet Polarization of Distant Radio Galaxies

112   0   0.0 ( 0 )
 نشر من قبل Sperello di Serego Alighieri
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an update of the test on the rotation of the plane of linear polarization for light traveling over cosmological distances, using a comparison between the measured direction of the UV polarization in 8 radio galaxies at z>2 and the direction predicted by the model of scattering of anisotropic nuclear radiation, which explains the polarization. No rotation is detected within a few degrees for each galaxy and, if the rotation does not depend on direction, then the all-sky-average rotation is constrained to be theta = -0.8 +/- 2.2. We discuss the relevance of this result for constraining cosmological birefringence, when this is caused by the interaction with a cosmological pseudo-scalar field or by the presence of a Cherns-Simons term.



قيم البحث

اقرأ أيضاً

We show that a non-minimal coupling of electromagnetism with background torsion can produce birefringence of the electromagnetic waves. This birefringence gives rise to a B-mode polarization of the CMB. From the bounds on B-mode from WMAP and BOOMERa nG data, one can put limits on the background torsion at $xi_{1}T_{1}=(-3.35 pm 2.65) times 10^{-22} GeV^{-1}$.
We review the methods used to test for the existence of cosmological birefringence, i.e. a rotation of the plane of linear polarization for electromagnetic radiation traveling over cosmological distances, which might arise in a number of important co ntexts involving the violation of fundamental physical principles. The main methods use: (1) the radio polarization of radio galaxies and quasars, (2) the ultraviolet polarization of radio galaxies, and (3) the cosmic microwave background polarization. We discuss the main results obtained so far, the advantages and disadvantages of each method, and future prospects.
Cosmic Microwave Background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitat ional wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several non-standard, symmetry breaking theories of electrodynamics that allow for textit{in vacuo} rotation if the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the CMB may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle $alpha=-4.3^circpm4.1^circ$. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then $1^circ$ for Planck and $0.2circ$ for EPIC, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a GW background.
We apply the Effective Field Theory of Large-Scale Structure to analyze the $w$CDM cosmological model. By using the full shape of the power spectrum and the BAO post-reconstruction measurements from BOSS, the Supernovae from Pantheon, and a prior fro m BBN, we set the competitive CMB-independent limit $w=-1.046_{-0.052}^{+0.055}$ at $68%$ C.L.. After adding the Planck CMB data, we find $w=-1.023_{-0.030}^{+0.033}$ at $68%$ C.L.. Our results are obtained using PyBird, a new, fast Python-based code which we make publicly available.
A new determination of the sound horizon scale in angular coordinates is presented. It makes use of ~ 0.6 x 10^6 Luminous Red Galaxies, selected from the Sloan Digital Sky Survey imaging data, with photometric redshifts. The analysis covers a redshif t interval that goes from z=0.5 to z=0.6. We find evidence of the Baryon Acoustic Oscillations (BAO) signal at the ~ 2.3 sigma confidence level, with a value of theta_{BAO} (z=0.55) = (3.90 pm 0.38) degrees, including systematic errors. To our understanding, this is the first direct measurement of the angular BAO scale in the galaxy distribution, and it is in agreement with previous BAO measurements. We also show how radial determinations of the BAO scale can break the degeneracy in the measurement of cosmological parameters when they are combined with BAO angular measurements. The result is also in good agreement with the WMAP7 best-fit cosmology. We obtain a value of w_0 = -1.03 pm 0.16 for the equation of state parameter of the dark energy, Omega_M = 0.26 pm 0.04 for the matter density, when the other parameters are fixed. We have also tested the sensitivity of current BAO measurements to a time varying dark energy equation of state, finding w_a = 0.06 pm 0.22 if we fix all the other parameters to the WMAP7 best-fit cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا