ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical mean-field approach to materials with strong electronic correlations

189   0   0.0 ( 0 )
 نشر من قبل Marcus Kollar
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.



قيم البحث

اقرأ أيضاً

The impact of leading collective electronic fluctuations on a free energy of a prototype 1D model for molecular systems is considered within the recently developed Fluctuating Local Field (FLF) approach. The FLF method is a non-perturbative extension of a mean-field theory, where a self-consistent effective constant field is replaced by a fluctuating one. Integrating the fluctuating field out numerically exactly allows to account for collective electronic fluctuations mediated by this field without any assumptions on their magnitude, degree of nonlinearity, etc. Using a half-filled Hubbard ring as a benchmark system, we find that the FLF method noticeably improves a mean-field estimation for the free energy, in particular below the mean-field Neel temperature. We further demonstrate that the mean-field result can be even more improved introducing a multi-mode FLF scheme that additionally takes into account sub-leading fluctuations. Possible applications for the thermodynamics of real molecules are also discussed.
We present a review of the basic ideas and techniques of the spectral density functional theory which are currently used in electronic structure calculations of strongly-correlated materials where the one-electron description breaks down. We illustra te the method with several examples where interactions play a dominant role: systems near metal-insulator transition, systems near volume collapse transition, and systems with local moments.
Strong electronic correlations pose one of the biggest challenges to solid state theory. We review recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT) . On top of this, non-local correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge-, magnetic-, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. We provide an overview of the successes and results achieved---hitherto mainly for model Hamiltonians---and outline future prospects for realistic material calculations.
We propose a cellular version of dynamical-mean field theory which gives a natural generalization of its original single-site construction and is formulated in different sets of variables. We show how non-orthogonality of the tight-binding basis sets enters the problem and prove that the resulting equations lead to manifestly causal self energies.
79 - Souvik Paul 2017
Using local density approximation plus dynamical mean-field theory (LDA+DMFT), we have computed the valence band photoelectron spectra of highly popular multiferroic BiFeO$_{3}$. Within DMFT, the local impurity problem is tackled by exact diagonaliza tion (ED) solver. For comparison, we also present result from LDA+U approach, which is commonly used to compute physical properties of this compound. Our LDA+DMFT derived spectra match adequately with the experimental hard X-ray photoelectron spectroscopy (HAXPES) and resonant photoelectron spectroscopy (RPES) for Fe 3$d$ states, whereas the other theoretical method that we employed failed to capture the features of the measured spectra. Thus, our investigation shows the importance of accurately incorporating the dynamical aspects of electron-electron interaction among the Fe 3$d$ orbitals in calculations to produce the experimental excitation spectra, which establishes BiFeO$_{3}$ as a strongly correlated electron system. The LDA+DMFT derived density of states (DOSs) exhibit significant amount of Fe 3$d$ states at the energy of Bi lone-pairs, implying that the latter is not as alone as previously thought in the spectral scenario. Our study also demonstrates that the combination of orbital cross-sections for the constituent elements and broadening schemes for the calculated spectral function are pivotal to explain the detailed structures of the experimental spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا