ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation function of quasars in real and redshift space from the Sloan Digital Sky Survey Data Release 7

89   0   0.0 ( 0 )
 نشر من قبل Ganna Ivashchenko
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the quasar two-point correlation function (2pCF) within the redshift interval $0.8<z<2.2$ using a sample of 52303 quasars selected from the recent 7th Data Release of the Sloan Digital Sky Survey. Our approach to 2pCF uses a concept of locally Lorentz (Fermi) frame for determination of the distance between objects and permutation method of the random catalogue generation. Assuming the spatially flat cosmological model with given $Omega_{Lambda}=0.726$, we found that the real-space 2pCF is fitted well with the power-low model within the distance range $1<sigma<35$ $h^{-1}$ Mpc with the correlation length $r_{0}=5.85pm0.33$ $h^{-1}$ Mpc and the slope $gamma=1.87pm0.07$. The redshift-space 2pCF is approximated with $s_{0}=6.43pm0.63$ $h^{-1}$ Mpc and $gamma=1.21pm0.24$ for $1<s<10$ $h^{-1}$ Mpc, and $s_{0}=7.37pm0.81$ $h^{-1}$ Mpc and $gamma=1.90pm0.24$ for $10<s<35$ $h^{-1}$ Mpc. For distances $s>10,h^{-1}$ Mpc the parameter describing the large-scale infall to density inhomogeneities is $beta=0.63pm0.10$ with the linear bias $b=1.44pm0.22$ that marginally (within 2$sigma$) agrees with the linear theory of cosmological perturbations. We discuss possibilities to obtain a statistical estimate of the random component of quasars velocities (different from the large-scale infall). We note rather slight dependence of quasars velocity dispersion upon the 2pCF parameters in the region $r<2$ Mpc.



قيم البحث

اقرأ أيضاً

The spectroscopic Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) galaxy sample represents the final set of galaxies observed using the original SDSS target selection criteria. We analyse the clustering of galaxies within this sample, including both the Luminous Red Galaxy (LRG) and Main samples, and also include the 2-degree Field Galaxy Redshift Survey (2dFGRS) data. Baryon Acoustic Oscillations are observed in power spectra measured for different slices in redshift; this allows us to constrain the distance--redshift relation at multiple epochs. We achieve a distance measure at redshift z=0.275, of r_s(z_d)/D_V(0.275)=0.1390+/-0.0037 (2.7% accuracy), where r_s(z_d) is the comoving sound horizon at the baryon drag epoch, D_V(z)=[(1+z)^2D_A^2cz/H(z)]^(1/3), D_A(z) is the angular diameter distance and H(z) is the Hubble parameter. We find an almost independent constraint on the ratio of distances D_V(0.35)/D_V(0.2)=1.736+/-0.065, which is consistent at the 1.1sigma level with the best fit Lambda-CDM model obtained when combining our z=0.275 distance constraint with the WMAP 5-year data. The offset is similar to that found in previous analyses of the SDSS DR5 sample, but the discrepancy is now of lower significance, a change caused by a revised error analysis and a change in the methodology adopted, as well as the addition of more data. Using WMAP5 constraints on Omega_bh^2 and Omega_ch^2, and combining our BAO distance measurements with those from the Union Supernova sample, places a tight constraint on Omega_m=0.286+/-0.018 and H_0 = 68.2+/-2.2km/s/Mpc that is robust to allowing curvature and non-Lambda dark energy. This result is independent of the behaviour of dark energy at redshifts greater than those probed by the BAO and supernova measurements. (abridged)
We assess evolution in the black hole mass - stellar velocity dispersion relationship (M-sigma relationship) for quasars in the Sloan Digital Sky Survey Data Release 7 for the redshift range 0.1 < z < 1.2. We estimate the black hole mass using the ph otoionization method, with the broad Hbeta or Mg II emission line and the quasar continuum luminosity. For the stellar velocity dispersion, we use the narrow [O III] or [O II] emission line as a surrogate. This study is a follow-up to an earlier study in which we investigated evolution in the M-sigma relationship in quasars from Data Release 3. The greatly increased number of quasars in our new sample has allowed us to break our lower-redshift subsample into black hole mass bins and probe the M-sigma relationship for constant black hole mass. The M-sigma relationship for the highest-mass (log M > 9 solar masses) and lowest-mass (log M < 7.5 solar masses) black holes appears to evolve significantly, however most or all of this apparent evolution can be accounted for by various observational biases due to intrinsic scatter in the relationship and to uncertainties in observed quantities. The M-sigma relationship for black holes in the middle mass range (7.5 < log M < 9 solar masses) shows minimal change with redshift. The overall results suggest a limit of +/- 0.2 dex on any evolution in the M-sigma relationship for quasars out to z ~ 1 compared with the relationship observed in the local universe. Intrinsic scatter may also provide a plausible way to reconcile the wide range of results of several different studies of the black hole - galaxy relationships.
The Survey Science Centre of the XMM-Newton satellite released the first incremental version of the 2XMM catalogue in August 2008 . With more than 220,000 X-ray sources, the 2XMMi was at that time the largest catalogue of X-ray sources ever published and thus constitutes an unprecedented resource for studying the high-energy properties of various classes of X-ray emitters such as AGN and stars. The advent of the 7th release of the Sloan Digital Sky Survey offers the opportunity to cross-match two major surveys and extend the spectral energy distribution of many 2XMMi sources towards the optical bands. We here present a cross-matching algorithm based on the classical likelihood ratio estimator. The method developed has the advantage of providing true probabilities of identifications without resorting to Monte-Carlo simulations. Over 30,000 2XMMi sources have SDSS counterparts with individual probabilities of identification higher than 90%. Using spectroscopic identifications from the SDSS DR7 catalogue supplemented by extraction from other catalogues, we build an identified sample from which the way the various classes of X-ray emitters gather in the multi dimensional parameter space can be analysed. We investigate two scientific use cases. In the first example we show how these multi-wavelength data can be used to search for new QSO2s. Although no specific range of observed properties allows us to identify Compton Thick QSO2s, we show that the prospects are much better for Compton Thin AGN2 and discuss several possible multi-parameter selection strategies. In a second example, we confirm the hardening of the mean X-ray spectrum with increasing X-ray luminosity on a sample of over 500 X-ray active stars and reveal that on average X-ray active M stars display bluer $g-r$ colour indexes than less active ones (abridged).
We present measurements of the spectral properties for a total of 526,265 quasars, out of which 63% have continuum S/N$>3$ pixel$^{-1}$, selected from the fourteenth data release of the Sloan Digital Sky Survey (SDSS-DR14) quasar catalog. We performe d a careful and homogeneous analysis of the SDSS spectra of these sources, to estimate the continuum and line properties of several emission lines such as H${alpha}$, H${beta}$, H${gamma}$, Mg textsc{ii}, C textsc{iii]}, C textsc{iv} and Ly${alpha}$. From the derived emission line parameters, we estimated single-epoch virial black hole masses ($M_{mathrm{BH}}$) for the sample using H${beta}$, Mg textsc{ii} and C textsc{iv} emission lines. The sample covers a wide range in bolometric luminosity ($log L_{mathrm{bol}}$; erg s$^{-1}$) between 44.4 and 47.3 and $log M_{mathrm{BH}}$ between 7.1 and 9.9 $M_{odot}$. Using the ratio of $L_{mathrm{bol}}$ to the Eddington luminosity as a measure of the accretion rate, the logarithm of the accretion rate is found to be in the range between $-$2.06 and 0.43. We performed several correlation analyses between different emission line parameters and found them to match with that known earlier using smaller samples. We noticed that strong Fe textsc{ii} sources with large Balmer line width, and highly accreting sources with large $M_{mathrm{BH}}$ are rare in our sample. We make available online an extended and complete catalog that contains various spectral properties of 526,265 quasars derived in this work along with other properties culled from the SDSS-DR14 quasar catalog.
237 - Nicholas P. Ross 2009
We present measurements of the quasar two-point correlation function, xi_{Q}, over the redshift range z=0.3-2.2 based upon data from the SDSS. Using a homogeneous sample of 30,239 quasars with spectroscopic redshifts from the DR5 Quasar Catalogue, ou r study represents the largest sample used for this type of investigation to date. With this redshift range and an areal coverage of approx 4,000 deg^2, we sample over 25 h^-3 Gpc^3 (comoving) assuming the current LCDM cosmology. Over this redshift range, we find that the redshift-space correlation function, xi(s), is adequately fit by a single power-law, with s_{0}=5.95+/-0.45 h^-1 Mpc and gamma_{s}=1.16+0.11-0.16 when fit over s=1-25 h^-1 Mpc. Using the projected correlation function we calculate the real-space correlation length, r_{0}=5.45+0.35-0.45 h^-1 Mpc and gamma=1.90+0.04-0.03, over scales of rp=1-130 h^-1 Mpc. Dividing the sample into redshift slices, we find very little, if any, evidence for the evolution of quasar clustering, with the redshift-space correlation length staying roughly constant at s_{0} ~ 6-7 h^-1 Mpc at z<2.2 (and only increasing at redshifts greater than this). Comparing our clustering measurements to those reported for X-ray selected AGN at z=0.5-1, we find reasonable agreement in some cases but significantly lower correlation lengths in others. We find that the linear bias evolves from b~1.4 at z=0.5 to b~3 at z=2.2, with b(z=1.27)=2.06+/-0.03 for the full sample. We compare our data to analytical models and infer that quasars inhabit dark matter haloes of constant mass M ~2 x 10^12 h^-1 M_Sol from redshifts z~2.5 (the peak of quasar activity) to z~0. [ABRIDGED]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا