ترغب بنشر مسار تعليمي؟ اضغط هنا

An excess of star-forming galaxies in the fields of high-redshift QSOs

114   0   0.0 ( 0 )
 نشر من قبل Jason A. Stevens
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present submillimetre and mid-infrared imaging observations of five fields centred on quasi-stellar objects (QSOs) at 1.7<z<2.8. All 5 QSOs were detected previously at submillimetre wavelengths. At 850 (450) um we detect 17 (11) submillimetre galaxies (SMGs) in addition to the QSOs. The total area mapped at 850 um is ~28 arcmin^2 down to RMS noise levels of 1-2 mJy/beam, depending on the field. Integral number counts are computed from the 850 um data using the same analytical techniques adopted by `blank-field submillimetre surveys. We find that the `QSO-field counts show a clear excess over the blank-field counts at deboosted flux densities of 2-4 mJy; at higher flux densities the counts are consistent with the blank-field counts. Robust mid-infrared counterparts are identified for all four submillimetre detected QSOs and ~60 per cent of the SMGs. The mid-infrared colours of the QSOs are similar to those of the local ULIRG/AGN Mrk 231 if placed at 1<z<3 whilst most of the SMGs have colours very similar to those of the local ULIRG Arp 220 at 1<z<3. Mid-infrared diagnostics therefore find no strong evidence that the SMGs host buried AGN although we cannot rule out such a possibility. Taken together our results suggest that the QSOs sit in regions of the early universe which are undergoing an enhanced level of major star-formation activity, and should evolve to become similarly dense regions containing massive galaxies at the present epoch. Finally, we find evidence that the level of star-formation activity in individual galaxies appears to be lower around the QSOs than it is around more powerful radio-loud AGN at higher redshifts.



قيم البحث

اقرأ أيضاً

We compare the relations among various integrated characteristics of ~25,000 low-redshift (z<1.0) compact star-forming galaxies (CSFGs) from Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and of high-redshift (z>1.5) star-forming galax ies (SFGs) with respect to oxygen abundances, stellar masses M*, far-UV absolute magnitudes M(FUV), star-formation rates SFR and specific star-formation rates sSFR, Lyman-continuum photon production efficiencies (xi_ion), UV continuum slopes beta, [OIII]5007/[OII]3727 and [NeIII]3868/[OII]3727 ratios, and emission-line equivalent widths EW([OII]3727), EW([OIII]5007), and EW(Halpha). We find that the relations for low-z CSFGs with high equivalent widths of the Hbeta emission line, EW(Hbeta)>100A, and high-z SFGs are very similar, implying close physical properties in these two categories of galaxies. Thus, CSFGs are likely excellent proxies for the SFGs in the high-z Universe. They also extend to galaxies with lower stellar masses, down to ~10^6 Msun, and to absolute FUV magnitudes as faint as -14 mag. Thanks to their proximity, CSFGs can be studied in much greater detail than distant SFGs. Therefore, the relations between the integrated characteristics of the large sample of CSFGs studied here can prove very useful for our understanding of high-z dwarf galaxies in future observations with large ground-based and space telescopes.
High signal-to-noise, representative spectra of star-forming galaxies at z~2, obtained via stacking, reveal a high-velocity component underneath the narrow H-alpha and [NII] emission lines. When modeled as a single Gaussian, this broad component has FWHM > 1500 km/s; when modeled as broad wings on the H-alpha and [NII] features, it has FWHM > 500 km/s. This feature is preferentially found in the more massive and more rapidly star-forming systems, which also tend to be older and larger galaxies. We interpret this emission as evidence of either powerful starburst-driven galactic winds or active supermassive black holes. If galactic winds are responsible for the broad emission, the observed luminosity and velocity of this gas imply mass outflow rates comparable to the star formation rate. On the other hand, if the broad line regions of active black holes account for the broad feature, the corresponding black holes masses are estimated to be an order of magnitude lower than those predicted by local scaling relations, suggesting a delayed assembly of supermassive black holes with respect to their host bulges.
Identifying galaxy clustering at high redshift (i.e. z > 1) is essential to our understanding of the current cosmological model. However, at increasing redshift, clusters evolve considerably in star-formation activity and so are less likely to be ide ntified using the widely-used red sequence method. Here we assess the viability of instead identifying high redshift clustering using actively star-forming galaxies (SMGs associated with over-densities of BzKs/LBGs). We perform both a 2- and 3-D clustering analysis to determine whether or not true (3D) clustering can be identified where only 2D data are available. As expected, we find that 2D clustering signals are weak at best and inferred results are method dependant. In our 3D analysis, we identify 12 SMGs associated with an over-density of galaxies coincident both spatially and in redshift - just 8% of SMGs with known redshifts in our sample. Where an SMG in our target fields lacks a known redshift, their sightline is no more likely to display clustering than blank sky fields; prior redshift information for the SMG is required to identify a true clustering signal. We find that the strength of clustering in the volume around typical SMGs, while identifiable, is not exceptional. However, we identify a small number of highly clustered regions, all associated with an SMG. The most notable of these, surrounding LESSJ033336.8-274401, potentially contains an SMG, a QSO and 36 star-forming galaxies (a > 20sig over-density) all at z~1.8. This region is highly likely to represent an actively star-forming cluster and illustrates the success of using star-forming galaxies to select sites of early clustering. Given the increasing number of deep fields with large volumes of spectroscopy, or high quality and reliable photometric redshifts, this opens a new avenue for cluster identification in the young Universe.
We present a survey of the molecular gas in 61 submillimetre galaxies (SMGs) selected from 870$mu$m continuum surveys of the COSMOS, UDS and ECDFS fields, using the Atacama Large Millimeter Array (ALMA) and the Northern Extended Millimeter Array (NOE MA). 46 $^{12}$CO ($J=$2-5) emission lines are detected in 45 of the targets at $z=$1.2-4.8, with redshifts indicating that those which are submillimetre bright and undetected/faint in the optical/near-infrared typically lie at higher redshifts, with a gradient of $Delta z/Delta S_{870}=$0.11$pm$0.04mJy$^{-1}$. We also supplement our data with literature sources to construct a statistical CO spectral line energy distribution and find the $^{12}$CO line luminosities in SMGs peak at $J_{rm up}sim$6, consistent with the Cosmic Eyelash, among similar studies. Our SMGs lie mostly on or just above the main sequence, displaying a decrease in their gas depletion timescales $t_{rm dep} = M_{rm gas}/{rm SFR}$ with redshift in the range $zsim$1-5 and a median of 200$pm$50Myr at $zsim$2.8. This coincides with an increase in molecular gas fraction $mu_{rm gas} = M_{rm gas}/M_ast$ across the same redshift range. Finally we demonstrate that the $M_{rm baryon}$-$sigma$ distribution of our SMGs is consistent with that followed by early-type galaxies in the Coma cluster, providing strong support to the suggestion that SMGs are progenitors of massive local spheroidal galaxies. On the basis of this we suggest that the SMG populations above and below an 870-$mu$m flux limit of $S_{870}sim$5mJy may correspond to the division between slow- and fast-rotators seen in local early-type galaxies.
Submillimeter excess emission has been reported at 500 microns in a handful of local galaxies, and previous studies suggest that it could be correlated with metal abundance. We investigate the presence of an excess submillimeter emission at 500 micro ns for a sample of 20 galaxies from the Key Insights on Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) that span a range of morphologies and metallicities (12+log(O/H)=7.8-8.7). We probe the far-infrared (IR) emission using images from the Spitzer Space Telescope and Herschel Space Observatory in the wavelength range 24-500 microns. We model the far-IR peak of the dust emission with a two-temperature modified blackbody and measure excess of the 500 micron photometry relative to that predicted by our model. We compare the submillimeter excess, where present, with global galaxy metallicity and, where available, resolved metallicity measurements. We do not find any correlation between the 500 micron excess and metallicity. A few individual sources do show excess (10-20%) at 500 microns; conversely, for other sources, the model overpredicts the measured 500 micron flux density by as much as 20%, creating a 500 micron deficit. None of our sources has an excess larger than the calculated 1-sigma uncertainty, leading us to conclude that there is no substantial excess at submillimeter wavelengths at or shorter than 500 microns in our sample. Our results differ from previous studies detecting 500 micron excess in KINGFISH galaxies largely due to new, improved photometry used in this study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا