ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum spin chains of Temperley-Lieb type: periodic boundary conditions, spectral multiplicities and finite temperature

169   0   0.0 ( 0 )
 نشر من قبل Britta Aufgebauer
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the spectra of a class of quantum spin chains of Temperley-Lieb type by utilizing the concept of Temperley-Lieb equivalence with the S=1/2 XXZ chain as a reference system. We consider open boundary conditions and in particular periodic boundary conditions. For both types of boundaries the identification with XXZ spectra is performed within isomorphic representations of the underlying Temperley-Lieb algebra. For open boundaries the spectra of these models differ from the spectrum of the associated XXZ chain only in the multiplicities of the eigenvalues. The periodic case is rather different. Here we show how the spectrum is obtained sector-wise from the spectra of globally twisted XXZ chains. As a spin-off, we obtain a compact formula for the degeneracy of the momentum operator eigenvalues. Our representation theoretical results allow for the study of the thermodynamics by establishing a TL-equivalence at finite temperature and finite field.



قيم البحث

اقرأ أيضاً

In previous work with Scullard, we defined a graph polynomial P_B(q,T) that gives access to the critical temperature T_c of the q-state Potts model on a general two-dimensional lattice L. It depends on a basis B, containing n x m unit cells of L, and the relevant root of P_B(q,T) was observed to converge quickly to T_c in the limit n,m to infinity. Moreover, in exactly solvable cases there is no finite-size dependence at all. We reformulate this method as an eigenvalue problem within the periodic Temperley-Lieb algebra. This corresponds to taking m to infinity first, so the bases B are semi-infinite cylinders of circumference n. The limit implies faster convergence in n, while maintaining the n-independence in exactly solvable cases. In this setup, T_c(n) is determined by equating the largest eigenvalues of two topologically distinct sectors of the transfer matrix. Crucially, these two sectors determine the same critical exponent in the continuum limit, and the observed fast convergence is thus corroborated by results of conformal field theory. We obtain similar results for the dense and dilute phases of the O(N) loop model, using now a transfer matrix within the dilute periodic Temperley-Lieb algebra. The eigenvalue formulation allows us to double the size n for which T_c(n) can be obtained, using the same computational effort. We study in details three significant cases: (i) bond percolation on the kagome lattice, up to n = 14; (ii) site percolation on the square lattice, to n = 21; and (iii) self-avoiding polygons on the square lattice, to n = 19. Convergence properties of T_c(n) and extrapolation schemes are studied in details for the first two cases. This leads to rather accurate values for the percolation thresholds: p_c = 0.524404999167439(4) for bond percolation on the kagome lattice, and p_c = 0.59274605079210(2) for site percolation on the square lattice.
First-principles studies of strongly-interacting hadronic systems using lattice quantum chromodynamics (QCD) have been complemented in recent years with the inclusion of quantum electrodynamics (QED). The aim is to confront experimental results with more precise theoretical determinations, e.g. for the anomalous magnetic moment of the muon and the CP-violating parameters in the decay of mesons. Quantifying the effects arising from enclosing QED in a finite volume remains a primary target of investigations. To this end, finite-volume corrections to hadron masses in the presence of QED have been carefully studied in recent years. This paper extends such studies to the self-energy of moving charged hadrons, both on and away from their mass shell. In particular, we present analytical results for leading finite-volume corrections to the self-energy of spin-0 and spin-$frac{1}{2}$ particles in the presence of QED on a periodic hypercubic lattice, once the spatial zero mode of the photon is removed, a framework that is called $mathrm{QED}_{mathrm{L}}$. By altering modes beyond the zero mode, an improvement scheme is introduced to eliminate the leading finite-volume corrections to masses, with potential applications to other hadronic quantities. Our analytical results are verified by a dedicated numerical study of a lattice scalar field theory coupled to $mathrm{QED}_{mathrm{L}}$. Further, this paper offers new perspectives on the subtleties involved in applying low-energy effective field theories in the presence of $mathrm{QED}_{mathrm{L}}$, a theory that is rendered non-local with the exclusion of the spatial zero mode of the photon, clarifying recent discussions on this matter.
We introduce a new class of open, translationally invariant spin chains with long-range interactions depending on both spin permutation and (polarized) spin reversal operators, which includes the Haldane-Shastry chain as a particular degenerate case. The new class is characterized by the fact that the Hamiltonian is invariant under twisted translations, combining an ordinary translation with a spin flip at one end of the chain. It includes a remarkable model with elliptic spin-spin interactions, smoothly interpolating between the XXX Heisenberg model with anti-periodic boundary conditions and a new open chain with sites uniformly spaced on a half-circle and interactions inversely proportional to the square of the distance between the spins. We are able to compute in closed form the partition function of the latter chain, thereby obtaining a complete description of its spectrum in terms of a pair of independent su(1|1) and ${rm su}(m/2)$ motifs when the number $m$ of internal degrees of freedom is even. This implies that the even $m$ model is invariant under the direct sum of the Yangians $Y$(gl(1|1)) and $Y$(gl$(0|m/2)$). We also analyze several statistical properties of the new chains spectrum. In particular, we show that it is highly degenerate, which strongly suggests the existence of an underlying (twisted) Yangian symmetry also for odd $m$.
This work considers entropy generation and relaxation in quantum quenches in the Ising and $3$-state Potts spin chains. In the absence of explicit symmetry breaking we find universal ratios involving Renyi entropy growth rates and magnetisation relax ation for small quenches. We also demonstrate that the magnetisation relaxation rate provides an observable signature for the dynamical Gibbs effect which is a recently discovered characteristic non-monotonous behaviour of entropy growth linked to changes in the quasi-particle spectrum.
In this letter we continue the investigation of finite XXZ spin chains with periodic boundary conditions and odd number of sites, initiated in paper cite{S}. As it turned out, for a special value of the asymmetry parameter $Delta=-1/2$ the Hamiltonia n of the system has an eigenvalue, which is exactly proportional to the number of sites $E=-3N/2$. Using {sc Mathematica} we have found explicitly the corresponding eigenvectors for $N le 17$. The obtained results support the conjecture of paper cite{S} that this special eigenvalue corresponds to the ground state vector. We make a lot of conjectures concerning the correlations of the model. Many remarkable relations between the wave function components are noticed. It is turned out, for example, that the ratio of the largest component to the least one is equal to the number of the alternating sing matrices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا