ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of Spatial Distribution of Cold Atoms in An Integrating Sphere

162   0   0.0 ( 0 )
 نشر من قبل Wang Xucheng
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present an experiment to measure the spatial distribution of cold atoms in a ceramic integrating sphere. An quadrupole field is applied after the atoms are cooled by diffuse light produced in the ceramic integrating sphere, thus the shift of atomic magnetic sub-levels are position-dependent. We move the anti-Helmholtz coil horizontally while keeping the probe laser beam resonant with the cold atoms at the zero magnetic field. The absorption of the probe beam gives the number of cold atoms at different position. The results show that at the center of the integrating sphere, less atoms exist due to the leakage of diffuse light into the hole connecting to the vacuum pump. The method we developed in this paper is useful to detect cold atoms in a region where imaging is not possible.



قيم البحث

اقرأ أيضاً

We present a modified scheme for detection of the magneto-optical rotation (MOR) effect, where a linearly polarized laser field is interacting with cold $^{87}$Rb atoms in an integrating sphere. The rotation angle of the probe beams polarization plan e is detected in the experiment. The results indicate that the biased magnetic field, the probe light intensity and detuning, and the cold atoms temperature are key parameters for the MOR effect. This scheme may improve the contrast of the rotation signal and provide an useful approach for high contrast cold atom clocks and magnetometers.
We demonstrate a new method for non-destructive imaging of laser-cooled atoms. This spatial heterodyne technique forms a phase image by interfering a strong carrier laser beam with a weak probe beam that passes through the cold atom cloud. The figure of merit equals or exceeds that of phase-contrast imaging, and the technique can be used over a wider range of spatial scales. We show images of a dark spot MOT taken with imaging fluences as low as 61 pJ/cm^2 at a detuning of 11 linewidths, resulting in 0.0004 photons scattered per atom.
58 - P Liu , Y L Meng , J Y Wan 2016
We present an improvement of short term frequency stability of the integrating sphere cold atom clock after increasing the intensities of clock signals and optimizing the feedback loop of the clock. A short term frequency stability of $5.0times10^{-1 3}tau^{-1/2}$ has been achieved and the limiting factors have been analyzed.
About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it very difficult to measure G while keeping systematic effects under control. Most previous experiments performed were based on the torsion pendulum or torsion balance scheme as in the experiment by Cavendish in 1798, and in all cases macroscopic masses were used. Here we report the precise determination of G using laser-cooled atoms and quantum interferometry. We obtain the value G=6.67191(99) x 10^(-11) m^3 kg^(-1) s^(-2) with a relative uncertainty of 150 parts per million (the combined standard uncertainty is given in parentheses). Our value differs by 1.5 combined standard deviations from the current recommended value of the Committee on Data for Science and Technology. A conceptually different experiment such as ours helps to identify the systematic errors that have proved elusive in previous experiments, thus improving the confidence in the value of G. There is no definitive relationship between G and the other fundamental constants, and there is no theoretical prediction for its value, against which to test experimental results. Improving the precision with which we know G has not only a pure metrological interest, but is also important because of the key role that G has in theories of gravitation, cosmology, particle physics and astrophysics and in geophysical models.
We report on a high precision measurement of gravitational acceleration using ultracold strontium atoms trapped in a vertical optical lattice. Using amplitude modulation of the lattice intensity, an uncertainty $Delta g /g approx 10^{-7}$ was reached by measuring at the 5$^{th}$ harmonic of the Bloch oscillation frequency. After a careful analysis of systematic effects, the value obtained with this microscopic quantum system is consistent with the one we measured with a classical absolute gravimeter at the same location. This result is of relevance for the recent interpretation of related experiments as tests of gravitational redshift and opens the way to new tests of gravity at micrometer scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا