ﻻ يوجد ملخص باللغة العربية
We prove Anderson localization in a disordered photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the photonic crystal waveguide. In such structures, the localization length shows a 10-fold variation between the fast- and the slow-light regime and, in the latter case, it becomes shorter than the sample length thus giving rise to strongly confined modes. The dispersive behavior of the localization length demonstrates the close relation between Anderson localization and the photon density of states in disordered photonic crystals, which opens a promising route to controlling and exploiting Anderson localization for efficient light confinement.
Optical nanostructures have proven to be meritorious for tailoring the emission properties of quantum emitters. However, unavoidable fabrication imperfections may represent a nuisance. Quite remarkably, disorder offers new opportunities since light c
We present a numerical study of electromagnetic wave transport in disordered quasi-one-dimensional waveguides at terahertz frequencies. Finite element method calculations of terahertz wave propagation within LiNbO$_{3}$ waveguides with randomly arran
Hyperuniform disordered photonic materials (HDPM) are spatially correlated dielectric structures with unconventional optical properties. They can be transparent to long-wavelength radiation while at the same time have isotropic band gaps in another f
An ultra-broadband transverse magnetic (TM) pass hyperuniform disordered photonic crystal (HUDPC) polarizer is proposed and demonstrated on a silicon-on-insulator platform. Propagation of the transverse electric mode is blocked by three combined effe
We report enhanced optomechanical coupling by embedding a nano-mechanical beam resonator within an optical race-track resonator. Precise control of the mechanical resonator is achieved by clamping the beam between two low-loss photonic crystal wavegu