ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Debye temperature in sigma-phase Fe-V alloys

329   0   0.0 ( 0 )
 نشر من قبل Jakub Cieslak Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A series of sigma-phase Fe_{100-x}V_x samples with 34.4 < x < 59.0 were investigated by neutron and X-ray diffraction and Mossbauer spectroscopy (MS) techniques. The first two methods were used for verification of the transformation from alpha to sigma phase and they also permitted to determine lattice parameters of the unit cell. With MS the Debye temperature, T_D, was evaluated from the temperature dependence of the centre shift, <CS>, assuming its entire temperature dependence originates from the second-order Doppler shift. To our best knowledge, it is the first ever-reported study on T_D in sigma-FeV alloys. Both attice parameters i.e. a and c were revealed to linearly increase with x. T_D shows, however, a non-monotonic behaviour as a function of composition with its extreme values between 425K for x=40 and 600K for x=59. A local maximum of 525K was found to exist at x=43.



قيم البحث

اقرأ أيضاً

Formation energy of the sigma-phase in the Fe-V alloy system, Delta E, was computed in the full compositional range of its occurrence (34 < x < 60) using the electronic band structure calculations by means of the KKR method. Delta E-values were found to strongly depend on the Fe concentration, also its variation with different site occupancies was characteristic of a given lattice site. Calculated magnetic and configuration entropy contributions were used to determine sublattice occupancies for various compositions and temperatures. The results agree well with those obtained from neutron diffraction measurements.
A series of nine samples of sigma-Fe_{100-x}Mo_x with 44<x<57 were synthesized by a sintering method. The samples were investigated experimentally and theoretically. Using X-ray diffraction techniques structural parameters such as lattice constants, atomic positions within the unit cell and populations of atoms over five different sublattices were determined. An information on charge-densities and electric field gradients at particular lattice sites was obtained by application of the Korringa-Kohn-Rostoker (KKR) method for electronic structure calculations. Hyperfine quantities calculated with KKR were successfully applied to analyze Mossbauer spectra measured at room temperature.
Anomalies in the temperature dependences of the recoil-free factor, f, and the average center shift, <CS>, measured by 57-Fe Mossbauer Spectroscopy, were observed for the first time in the archetype of the sigma-phase alloys system, Fe-Cr. In both ca ses the anomaly started at the temperature close to the magnetic ordering temperature, and in both cases it was indicative of lattice vibrations hardening. As no magnetostrictive effects were found, the anomalies seem to be entirely due to a spin-phonon coupling. The observed changes in f and in <CS> were expressed in terms of the underlying changes in the potential, Delta E_p, and the kinetic energy, Delta E_k, respectively. The former, with the maximum value larger by a factor of six than the latter, decreases, while the latter increases with T. The total mechanical energy change, Delta E, was, in general, not constant, as expected for the Debye-like vibrations, but it resembled that of Delta E_p. Only in the range of 4-15 K, Delta E was hardly dependent on T.
Experimental investigation as well as theoretical calculations, of the Fe-partial phonon density-of-states (DOS) for nominally Fe_52.5Cr_47.5 alloy having (a) alpha- and (b) sigma-phase structure were carried out. The former at sector 3-ID of the Adv anced Photon Source, using the method of nuclear resonant inelastic X-ray scattering, and the latter with the direct method [K. Parlinski et al., Phys. Rev. Lett. {78, 4063 (1997)]. The characteristic features of phonon DOS, which differentiate one phase from the other, were revealed and successfully reproduced by the theory. Various data pertinent to the dynamics such as Lamb-Mossbauer factor, f, kinetic energy per atom, E_k, and the mean force constant, D, were directly derived from the experiment and the theoretical calculations, while vibrational specific heat at constant volume, C_V, and vibrational entropy, S were calculated using the Fe-partial DOS. Using the values of f and C_V, we determined values for Debye temperatures, T_D. An excellent agreement for some quantities derived from experiment and first-principles theory, like C_V and quite good one for others like D and S was obtained.
Mechanism for acceleration of phase separation in Fe-base ternary alloys was investigated with use of a model based on the Cahn-Hilliard equation. Behavior of the minor element in an Fe-base ternary alloy along the trajectory of the peak of the major element is dependent on the sign of the second derivative of the chemical free energy with respect to the concentrations of the major and minor elements. However, the concentration of the major element along the trajectory of its peak top increases with time regardless of the sign of the second derivative of the chemical free energy. The addition of a substitutional element to an Fe-base binary alloy with composition within the spinodal region was found to accelerate phase separation
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا