We consider perfect simulation algorithms for locally stable point processes based on dominated coupling from the past, and apply these methods in two different contexts. A new version of the algorithm is developed which is feasible for processes which are neither purely attractive nor purely repulsive. Such processes include multiscale area-interaction processes, which are capable of modelling point patterns whose clustering structure varies across scales. The other topic considered is nonparametric regression using wavelets, where we use a suitable area-interaction process on the discrete space of indices of wavelet coefficients to model the notion that if one wavelet coefficient is non-zero then it is more likely that neighbouring coefficients will be also. A method based on perfect simulation within this model shows promising results compared to the standard methods which threshold coefficients independently.