ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of radio emission from air showers in atmospheric electric fields

165   0   0.0 ( 0 )
 نشر من قبل Stijn Buitink
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Buitink




اسأل ChatGPT حول البحث

We study the effect of atmospheric electric fields on the radio pulse emitted by cosmic ray air showers. Under fair weather conditions the dominant part of the radio emission is driven by the geomagnetic field. When the shower charges are accelerated and deflected in an electric field additional radiation is emitted. We simulate this effect with the Monte Carlo code REAS2, using CORSIKA-simulated showers as input. In both codes a routine has been implemented that treats the effect of the electric field on the shower particles. We find that the radio pulse is significantly altered in background fields of the order of ~100 V/cm and higher. Practically, this means that air showers passing through thunderstorms emit radio pulses that are not a reliable measure for the shower energy. Under other weather circumstances significant electric field effects are expected to occur rarely, but nimbostratus clouds can harbor fields that are large enough. In general, the contribution of the electric field to the radio pulse has polarization properties that are different from the geomagnetic pulse. In order to filter out radio pulses that have been affected by electric field effects, radio air shower experiments should keep weather information and perform full polarization measurements of the radio signal.



قيم البحث

اقرأ أيضاً

We have developed a code that semi-analytically calculates the radio footprint (intensity and polarization) of an extensive air shower subject to atmospheric electric fields. This can be used to reconstruct the height dependence of atmospheric electr ic field from the measured radio footprint. The various parameterizations of the spatial extent of the induced currents are based on the results of Monte-Carlo shower simulations. The calculated radio footprints agree well with microscopic CoREAS simulations.
We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.
161 - S. Buitink , T. Huege , H. Falcke 2009
The development of cosmic ray air showers can be influenced by atmospheric electric fields. Under fair weather conditions these fields are small, but the strong fields inside thunderstorms can have a significant effect on the electromagnetic componen t of a shower. Understanding this effect is particularly important for radio detection of air showers, since the radio emission is produced by the shower electrons and positrons. We perform Monte Carlo simulations to calculate the effects of different electric field configurations on the shower development. We find that the electric field becomes important for values of the order of 1 kV/cm. Not only can the energy distribution of electrons and positrons change significantly for such field strengths, it is also possible that runaway electron breakdown occurs at high altitudes, which is an important effect in lightning initiation.
CoREAS is a Monte Carlo code for the simulation of radio emission from extensive air showers. It implements the endpoint formalism for the calculation of electromagnetic radiation directly in CORSIKA. As such, it is parameter-free, makes no assumptio ns on the emission mechanism for the radio signals, and takes into account the complete complexity of the electron and positron distributions as simulated by CORSIKA. In this article, we illustrate the capabilities of CoREAS with simulations carried out in different frequency ranges from tens of MHz up to GHz frequencies, and describe in particular the emission characteristics at high frequencies due to Cherenkov effects arising from the varying refractive index of the atmosphere.
The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of th e electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed which cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge-excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا