ترغب بنشر مسار تعليمي؟ اضغط هنا

Chromospheric activity and rotation of FGK stars in the solar vicinity. An estimation of the radial velocity jitter

189   0   0.0 ( 0 )
 نشر من قبل Raquel Mart\\'inez-Arn\\'aiz
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: Chromospheric activity produces both photometric and spectroscopic variations that can be mistaken as planets. Large spots crossing the stellar disc can produce planet-like periodic variations in the light curve of a star. These spots clearly affect the spectral line profiles and their perturbations alter the line centroids creating a radial velocity jitter that might contaminate the variations induced by a planet. Precise chromospheric activity measurements are needed to estimate the activity-induced noise that should be expected for a given star. Aims: We obtain precise chromospheric activity measurements and projected rotational velocities for nearby (d < 25 pc) cool (spectral types F to K) stars, to estimate their expected activity-related jitter. As a complementary objective, we attempt to obtain relationships between fluxes in different activity indicator lines, that permit a transformation of traditional activity indicators, i.e, CaII H & K lines, to others that hold noteworthy advantages. Methods: We used high resolution (~50000) echelle optical spectra. To determine the chromospheric emission of the stars in the sample, we used the spectral subtraction technique. Rotational velocities were determined using the cross-correlation technique. To infer activity-related radial velocity (RV) jitter, we used empirical relationships between this jitter and the R_HK index. Results: We measured chromospheric activity, as given by different indicators throughout the optical spectra, and projected rotational velocities for 371 nearby cool stars. We have built empirical relationships among the most important chromospheric emission lines. Finally, we used the measured chromospheric activity to estimate the expected RV jitter for the active stars in the sample.



قيم البحث

اقرأ أيضاً

108 - J. Gomes da Silva 2020
We present a catalogue of homogeneous determined chromospheric emission (CE), stellar atmospheric parameters and ages for 1,674 FGK main sequence (MS), subgiant, and giant stars. The analysis of CE level and variability is also performed. We measured CE in the CaII lines using more than 180,000 high-resolution spectra from the HARPS spectrograph, as compiled in the AMBRE project, obtained between 2003 and 2019. We converted the fluxes to bolometric and photospheric corrected chromospheric emission ratio, $R_text{HK}$. Stellar atmospheric parameters $T_text{eff}$, $log g$, and [Fe/H] were retrieved from the literature or determined using an homogeneous method. $M_star$, $R_star$, and ages were determined from isochrone fitting. We analysed the CE distribution for the different luminosity classes and spectral types and confirmed the existence of the very inactive stars (VIS) and very active stars (VAS) populations at $log R_text{HK}< -5.1$ and $> -4.2$ dex, respectively. We found indications that the VIS population is composed mainly of subgiant and giant stars and that $log R_text{HK}= -5.1$ dex marks a transition in stellar evolution. There appears to be at least three regimes of variability, for inactive, active and very active stars, with the inactive and active regimes separated by a diagonal Vaughan-Preston gap. We show that stars with low activity levels do not necessarily have low variability. In the case of K dwarfs which show high CE variability, inactive and active stars have similar levels of activity variability. This means that activity levels alone are not enough to infer about the activity variability of a star. We also explained the shape of the VP gap observed in the distribution of CE by using the CE variability-level diagram. In the CE variability-level diagram, the Sun is located in the high variability region of the inactive MS stars zone. (Abridged)
The effect of stellar activity on RV appears to be a limiting factor in detecting Earth-mass planets in the habitable zone of a star similar to the Sun in spectral type and activity level. It is crucial to estimate if this conclusion remain true for other stars with current correction methods. We built realistic time series in RV and chromospheric emission for old main-sequence F6-K4 stars. The stellar parameters are spectral type, activity level, rotation period, cycle period and amplitude, latitude coverage, and spot constrast, which we chose to be in ranges that are compatible with our current knowledge. This very large set of synthetic time series allowed us to study the effect of the parameters on the RV jitter and how the different contributions to the RV are affected in this first analysis of the data set. The RV jitter was used to provide a first-order detection limit for each time series and different temporal samplings. We find that the coverage in latitude of the activity pattern and the cycle amplitudes have a strong effect on the RV jitter, as has stellar inclination. RV jitter trends with B-V and LogRHK are similar to observations, but activity cannot be responsible for RV jitter larger than 2-3 m/s for very quiet stars: this observed jitter is therefore likely to be due to other causes. We show that based on the RV jitter that is associated with each time series and using a simple criterion, a planet with one Earth mass and a period of one to two years probably cannot be detected with current analysis techniques, except for the lower mass stars in our sample, but many observations would be required. The effect of inclination is critical. The results are very important in the context of future RV follow-ups of transit detections of such planets. A significant improvement of analysis techniques and/or observing strategies must be made to reach such low detection limits.
The CoRoT satellite has recently discovered the transits of a telluric planet across the disc of a late-type magnetically active star dubbed CoRoT-7, while a second planet has been detected after filtering out the radial velocity (hereafter RV) varia tions due to stellar activity. We investigate the magnetic activity of CoRoT-7 and use the results for a better understanding of its impact on stellar RV variations. We derive the longitudinal distribution of active regions on CoRoT-7 from a maximum entropy spot model of the CoRoT light curve. Assuming that each active region consists of dark spots and bright faculae in a fixed proportion, we synthesize the expected RV variations. Active regions are mainly located at three active longitudes which appear to migrate at different rates, probably as a consequence of surface differential rotation, for which a lower limit of Delta Omega / Omega = 0.058 pm 0.017 is found. The synthesized activity-induced RV variations reproduce the amplitude of the observed RV curve and are used to study the impact of stellar activity on planetary detection. In spite of the non-simultaneous CoRoT and HARPS observations, our study confirms the validity of the method previously adopted to filter out RV variations induced by stellar activity. We find a false-alarm probability < 0.01 percent that the RV oscillations attributed to CoRoT-7b and CoRoT-7c are spurious effects of noise and activity. Additionally, our model suggests that other periodicities found in the observed RV curve of CoRoT-7 could be explained by active regions whose visibility is modulated by a differential stellar rotation with periods ranging from 23.6 to 27.6 days.
Solar simulations and observations show that the detection of long-period Earth-like planets is expected to be very difficult with radial velocity techniques in the solar case because of activity. The inhibition of the convective blueshift in active regions (which is then dominating the signal) is expected to decrease toward lower mass stars, which would provide more suitable conditions. In this paper we build synthetic time series to be able to precisely estimate the effects of activity on exoplanet detectability for stars with a wide range of spectral type (F6-K4) and activity levels (old main-sequence stars). We simulated a very large number of realistic time series of radial velocity, chromospheric emission, photometry, and astrometry. We built a coherent grid of stellar parameters that covers a wide range in the (B-V, LogRHK) space based on our current knowledge of stellar activity, to be able to produce these time series. We describe the model and assumptions in detail. We present first results on chromospheric emission. We find the average LogRHK to correspond well to the target values that are expected from the model, and observe a strong effect of inclination on the average LogRHK (over time) and its long-term amplitude. This very large set of synthetic time series offers many possibilities for future analysis, for example, for the parameter effect, correction method, and detection limits of exoplanets.
The atmospheric activity of the Sun and solar-type stars is analysed involving observations from HK-project at the Mount Wilson Observatory, the California and Carnegie Planet Search Program at the Keck and Lick Observatories, and the Magellan Planet Search Program at the Las Campanas Observatory. We show that for stars of F, G and K spectral classes, the cyclic activity, similar to the 11-yr Solar cycles, is different: it becomes more prominent in K-stars. Comparative study of solar-type stars with different levels of the chromospheric and coronal activity confirms that the Sun belongs to stars with the low level of the chromospheric activity and stands apart among these stars by the minimum level of the coronal radiation and minimum flux variations of the photospheric radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا