ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging the molecular gas in a submm galaxy at z = 4.05: cold mode accretion or a major merger?

134   0   0.0 ( 0 )
 نشر من قبل Chris Carilli
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C.L. Carilli




اسأل ChatGPT حول البحث

We present a high resolution (down to 0.18), multi-transition imaging study of the molecular gas in the z = 4.05 submillimeter galaxy GN20. GN20 is one of the most luminous starburst galaxy known at z > 4, and is a member of a rich proto-cluster of galaxies at z = 4.05 in GOODS-North. We have observed the CO 1-0 and 2-1 emission with the VLA, the CO 6-5 emission with the PdBI Interferometer, and the 5-4 emission with CARMA. The H_2 mass derived from the CO 1-0 emission is 1.3 times 10^{11} (alpha/0.8) Mo. High resolution imaging of CO 2-1 shows emission distributed over a large area, appearing as partial ring, or disk, of ~ 10kpc diameter. The integrated CO excitation is higher than found in the inner disk of the Milky Way, but lower than that seen in high redshift quasar host galaxies and low redshift starburst nuclei. The VLA CO 2-1 image at 0.2 resolution shows resolved, clumpy structure, with a few brighter clumps with intrinsic sizes ~ 2 kpc. The velocity field determined from the CO 6-5 emission is consistent with a rotating disk with a rotation velocity of ~ 570 km s^{-1} (using an inclination angle of 45^o), from which we derive a dynamical mass of 3 times 10^{11} msun within about 4 kpc radius. The star formation distribution, as derived from imaging of the radio synchrotron and dust continuum, is on a similar scale as the molecular gas distribution. The molecular gas and star formation are offset by ~ 1 from the HST I-band emission, implying that the regions of most intense star formation are highly dust-obscured on a scale of ~ 10 kpc. The large spatial extent and ordered rotation of this object suggests that this is not a major merger, but rather a clumpy disk accreting gas rapidly in minor mergers or smoothly from the proto-intracluster medium. ABSTRACT TRUNCATED



قيم البحث

اقرأ أيضاً

We report the detection of spatially extended CO 1-0 and 5-4 emission in the z=2.49 submillimeter galaxy (SMG) J123707+6214, using the Expanded Very Large Array and the Plateau de Bure Interferometer. The large molecular gas reservoir is spatially re solved into two CO(1-0) components (north-east and south-west; previously identified in CO 3-2 emission) with gas masses of 4.3 and 3.5 x 10^10 (alpha_CO/0.8) Msun. We thus find that the optically invisible north-east component slightly dominates the gas mass in this system. The total molecular gas mass derived from the CO(1-0) observations is ~2.5 times larger than estimated from CO(3-2). The two components are at approximately the same redshift, but separated by ~20 kpc in projection. The morphology is consistent with that of an early-stage merger. The total amount of molecular gas is sufficient to maintain the intense 500 Msun/yr starburst in this system for at least ~160 Myr. We derive line brightness temperature ratios of r_31=0.39+/-0.09 and 0.37+/-0.10, and r_51=0.26+/-0.07 and 0.25+/-0.08 in the two components, respectively, suggesting that the J>=3 lines are substantially subthermally excited. This also suggests comparable conditions for star formation in both components. Given the similar gas masses of both components, this is consistent with the comparable starburst strengths observed in the radio continuum emission. Our findings are consistent with other recent studies that find evidence for lower CO excitation in SMGs than in high-z quasar host galaxies with comparable gas masses. This may provide supporting evidence that both populations correspond to different evolutionary stages in the formation of massive galaxies.
We present UV and optical observations from the Cosmic Origins Spectrograph on the Hubble Space Telescope and Keck of a z= 0.27395 Lyman limit system (LLS) seen in absorption against the QSO PG1630+377. We detect H I absorption with log N(HI)=17.06pm 0.05 as well as Mg II, C III, Si III, and O VI in this system. The column densities are readily explained if this is a multi-phase system, with the intermediate and low ions arising in a very low metallicity ([Mg/ H] =-1.71 pm 0.06) photoionized gas. We identify via Keck spectroscopy and Large Binocular Telescope imaging a 0.3 L_* star-forming galaxy projected 37 kpc from the QSO at nearly identical redshift (z=0.27406, Delta v = -26 kms) with near solar metallicity ([O/ H]=-0.20 pm 0.15). The presence of very low metallicity gas in the proximity of a near-solar metallicity, sub-L_* galaxy strongly suggests that the LLS probes gas infalling onto the galaxy. A search of the literature reveals that such low metallicity LLSs are not uncommon. We found that 50% (4/8) of the well-studied z < 1 LLSs have metallicities similar to the present system and show sub-L_* galaxies with rho < 100 kpc in those fields where redshifts have been surveyed. We argue that the properties of these primitive LLSs and their host galaxies are consistent with those of cold mode accretion streams seen in galaxy simulations.
136 - Jennifer M. Lotz 2011
Calculating the galaxy merger rate requires both a census of galaxies identified as merger candidates, and a cosmologically-averaged `observability timescale T_obs(z) for identifying galaxy mergers. While many have counted galaxy mergers using a vari ety of techniques, T_obs(z) for these techniques have been poorly constrained. We address this problem by calibrating three merger rate estimators with a suite of hydrodynamic merger simulations and three galaxy formation models. We estimate T_obs(z) for (1) close galaxy pairs with a range of projected separations, (2) the morphology indicator G-M20, and (3) the morphology indicator asymmetry A. Then we apply these timescales to the observed merger fractions at z < 1.5 from the recent literature. When our physically-motivated timescales are adopted, the observed galaxy merger rates become largely consistent. The remaining differences between the galaxy merger rates are explained by the differences in the range of mass-ratio measured by different techniques and differing parent galaxy selection. The major merger rate per unit co-moving volume for samples selected with constant number density evolves much more strongly with redshift (~ (1+z)^(+3.0 pm 1.1)) than samples selected with constant stellar mass or passively evolving luminosity (~ (1+z)^(+0.1 pm 0.4)). We calculate the minor merger rate (1:4 < M_{sat}/M_{primary} <~ 1:10) by subtracting the major merger rate from close pairs from the `total merger rate determined by G-M20. The implied minor merger rate is ~3 times the major merger rate at z ~ 0.7, and shows little evolution with redshift.
160 - C. Lopez-Sanjuan 2009
Aims: We study the major merger fraction in a SPITZER/IRAC-selected catalogue in the GOODS-S field up to z ~ 1 for luminosity- and mass-limited samples. Methods: We select disc-disc merger remnants on the basis of morphological asymmetries, and add ress three main sources of systematic errors: (i) we explicitly apply morphological K-corrections, (ii) we measure asymmetries in galaxies artificially redshifted to z_d = 1.0 to deal with loss of morphological information with redshift, and (iii) we take into account the observational errors in z and A, which tend to overestimate the merger fraction, though use of maximum likelihood techniques. Results: We obtain morphological merger fractions (f_m) below 0.06 up to z ~ 1. Parameterizing the merger fraction evolution with redshift as f_m(z) = f_m(0) (1+z)^m, we find that m = 1.8 +/- 0.5 for M_B <= -20 galaxies, while m = 5.4 +/- 0.4 for M_star >= 10^10 M_Sun galaxies. When we translate our merger fractions to merger rates (R_m), their evolution, parameterized as R_m(z) = R_m(0) (1+z)^n, is quite similar in both cases: n = 3.3 +/- 0.8 and n = 3.5 +/- 0.4, respectively. Conclusions: Our results imply that only ~8% of todays M_star >= 10^10 M_Sun galaxies have undergone a disc-disc major merger since z ~ 1. In addition, ~21% of this mass galaxies at z ~ 1 have undergone one of these mergers since z ~ 1.5. This suggests that disc-disc major mergers are not the dominant process in the evolution of M_star >= 10^10 M_Sun galaxies since z ~ 1, but may be an important process at z > 1.
We report on the detection of bright CO(4-3) line emission in two powerful, obscured quasars discovered in the SWIRE survey, SW022513 and SW022550 at z>3.4. We analyze the line strength and profile to determine the gas mass, dynamical mass and the ga s dynamics for both galaxies. In SW022513 we may have found the first evidence for a molecular, AGN-driven wind in the early Universe. The line profile in SW022513 is broad (FWHM = 1000 km/s) and blueshifted by -200 km/s relative to systemic (where the systemic velocity is estimated from the narrow components of ionized gas lines, as is commonly done for AGN at low and high redshifts). SW022550 has a more regular, double-peaked profile, which is marginally spatially resolved in our data, consistent with either a merger or an extended disk. The molecular gas masses, 4x10^10 Msun, are large and account for <30% of the stellar mass, making these obscured QSOs as gas rich as other powerful CO emitting galaxies at high redshift, i.e., submillimeter galaxies. Our sources exhibit relatively lower star-formation efficiencies compared to other dusty, powerful starburst galaxies at high redshift. We speculate that this could be a consequence of the AGN perturbing the molecular gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا