ترغب بنشر مسار تعليمي؟ اضغط هنا

The intriguing nature of the high energy gamma ray source XSSJ12270-4859

115   0   0.0 ( 0 )
 نشر من قبل Domitilla de Martino Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the hard X-ray source XSSJ12270-4859 is still unclear though it was claimed to be a magnetic Cataclysmic Variable. We here present a broad-band X-ray and gamma ray study based on a recent XMM-Newton observation and archival INTEGRAL and RXTE data. From the Fermi/LAT 1-year point source catalogue, we tentatively associate XSSJ12270-4859 with 1FGLJ1227.9-4852, a source of high energy gamma rays with emission up to 10GeV. We complement the study with UV photometry from XMM-Newton and ground-based optical and near-IR photometry. The X-ray emission is highly variable showing flares and intensity dips. The X-ray flares consist of flare-dip pairs. Flares are also detected in the UV range but not the dips. Aperiodic dipping behaviour is also observed during X-ray quiescence but not in the UV. The 0.2-100keV spectrum is featureless and described by a power law model with Gamma=1.7. The 100MeV-10GeV spectrum is instead represented by a power law index of 2.45. The luminosity ratio between 0.1-100GeV and 0.2--100keV is ~0.8, hence the GeV emission is a significant component of the total energy output. Furthermore, the X-ray spectrum does not greatly change during flares, quiescence and the dips seen in quiescence but it hardens during the post-flare dips. Optical photometry reveals a period of 4.32hr likely related to the binary orbit. Near-IR, possibly ellipsoidal, variations are detected. Large amplitude variability on shorter (tens mins) timescales are found to be non-periodic. The observed variability at all wavelengths and the spectral characteristics strongly favour a low-mass atypical low-luminosity X-ray binary and are against a Cataclysmic Variable nature. The association with a Fermi/LAT high energy gamma ray source further strengths this interpretation.



قيم البحث

اقرأ أيضاً

XSSJ1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGLJ1227.9-4852/2FGLJ1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity low-mass X-r ay binary (LMXB), but its nature is still unclear. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. The X-ray history of XSSJ1227.0-4859 over 7yr shows a persistent and rather stable low-luminosity (~6x10^33 d_{1,kpc}^2 erg/s) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGLJ1227.7-4853 is also stable over an overlapping period of 4.7,yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at ~13,kK and a cool one at ~4.6,kK. The latter would suggest a late-type K2-K5 companion star, a distance range of1.4--3.6kpc and an orbital period of 7--9 h. A near-UV variability (>6,h) also suggests a longer orbital period than previously estimated. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB black hole with a compact jet. In this case it would be the first associated with a high-energy gamma-ray source.
We present an analysis of X-ray, Ultraviolet and optical/near-IR photometric data of the transitional millisecond pulsar binary XSSJ12270-4859, obtained at different epochs after the transition to a rotation-powered radio pulsar state. The observatio ns, while confirming the large-amplitude orbital modulation found in previous studies after the state change, also reveal an energy dependence of the amplitudes as well as variations on time scale of months. The amplitude variations are anti-correlated in the X-ray and the UV/optical bands. The average X-ray spectrum is described by a power law with Gamma index of 1.07(8) without requiring an additional thermal component. The power law index Gamma varies from 1.2 to 1.0 between superior and inferior conjunction of the neutron star. We interpret the observed X-ray behaviour in terms of synchrotron radiation emitted in an extended intrabinary shock, located between the pulsar and the donor star, which is eclipsed due to the companion orbital motion. The G5 type donor dominates the UV/optical and near-IR emission and is similarly found to be heated up to ? 6500K as in the disc state. The analysis of optical light curves gives a binary inclination 46 < i < 65deg and a mass ratio 0.11 < q <0.26. The donor mass is found to be 0.15 < M2 < 0.36Msun for a neutron star mass of 1.4Msun. The variations in the amplitude of the orbital modulation are interpreted in terms of small changes in the mass flow rate from the donor star. The spectral energy distribution from radio to gamma-rays is composed by multiple contributions that are different from those observed during the accretion-powered state.
PKS 2155-304 is a blazar located in the Southern Hemisphere, monitored with the High Energy Stereoscopic System (H.E.S.S.) at very high energy (VHE, E>100 GeV) $gamma$ rays every year since 2002. Thanks to the large data set collected in the VHE rang e and simultaneous coverage in optical, ultraviolet (UV), X-ray and high energy $gamma$-ray ranges, this object is an excellent laboratory to study spectral and temporal variability in blazars. However, despite many years of dense monitoring, the nature of the variability observed in PKS 2155-304 remains puzzling. In this paper, we discuss the complex spectral and temporal variability observed in PKS 2155-304. The data discussed include VHE $gamma$-ray data collected with H.E.S.S. between 2013 and 2016, complemented with multiwavelength (MWL) observations from Fermi-LAT, Swift-XRT, Swift-UVOT, SMARTS, and the ATOM telescope. During the period of monitoring, PKS 2155-304 was transitioning from its lower state to the flaring states, and exhibiting different flavors of outbursts. For the first time, orphan optical flare lasting a few months was observed. Correlation studies show an indication of correlation between the X-ray and VHE $gamma$-ray fluxes. Interestingly, a comparison of optical and X-ray or VHE $gamma$-ray fluxes does not show global correlation. However, two distinct tracks in the diagram were found, which correspond to the different flaring activity states of PKS 2155-304.
The nature of the first unidentified VHE gamma-ray source with significant angular offset from the Galactic plane of 3.5 degrees, HESS J1507-622, is explored. Fermi-LAT data in the high-energy (HE, 100 MeV < E < 100 GeV) gamma-ray range collected ove r 34 month are used to describe the spectral energy distribution (SED) of the source. HESS J1507-622 is detected in the Fermi energy range and its spectrum is best described by a power law in energy with Gamma=1.7 +/- 0.1 stat +/- 0.2_sys and integral flux between (0.3-300) GeV of F = (2.0 +/-0.5_stat +/- 1.0_sys) x 10^-9 cm^-2 s^-1. With the available data it is not possible to discriminate between a hadronic and a leptonic scenario for HESS J1507-622. The location and compactness of the source indicate a considerable physical offset from the Galactic plane for this object. In case of a multiple-kpc distance, this challenges a pulsar wind nebula (PWN) origin for HESS J1507-622 since the time of travel for a pulsar born in the Galactic disk to reach such a location would exceed the inverse Compton (IC) cooling time of electrons that are energetic enough to produce VHE gamma-rays. However, an origin of this gamma-ray source connected to a pulsar that was born off the Galactic plane in the explosion of a hypervelocity star cannot be excluded. The nature of HESS J1507-622 is still unknown to date, and a PWN scenario cannot be ruled out in general. On the contrary HESS J1507-622 could be the first discovered representative of a population of spatially extended VHE gamma-ray emitters with HE gamma-ray counterpart that are located at considerable offsets from the Galactic plane. Future surveys in the VHE gamma-ray range are necessary to probe the presence or absence of such a source population.(abridged)
The H.E.S.S. telescope array has observed the complex Monoceros Loop SNR/Rosette Nebula region which contains unidentified high energy EGRET sources and potential very-high-energy (VHE) gamma-ray source. We announce the discovery of a new point-like VHE gamma-ray sources, HESS J0632+057. It is located close to the rim of the Monoceros SNR and has no clear counterpart at other wavelengths. Data from the NANTEN telescope have been used to investigate hadronic interactions with nearby molecular clouds. We found no evidence for a clear association. The VHE gamma-ray emission is possibly associated with the lower energy gamma-ray source 3EG J0634+0521, a weak X-ray source 1RXS J063258.3+054857 and the Be-star MWC 148.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا