ترغب بنشر مسار تعليمي؟ اضغط هنا

Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II, and III

168   0   0.0 ( 0 )
 نشر من قبل Roger Wendell
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a search for non-zero theta_{13} and deviations of sin^2 theta_{23} from 0.5 in the oscillations of atmospheric neutrino data from Super-Kamiokande -I, -II, and -III. No distortions of the neutrino flux consistent with non-zero theta_{13} are found and both neutrino mass hierarchy hypotheses are in agreement with the data. The data are best fit at Delta m^2 = 2.1 x 10^-3 eV^2, sin^2 theta_{13} = 0.0, and sin^2 theta_{23} =0.5. In the normal (inverted) hierarchy theta_{13} and Delta m^2 are constrained at the one-dimensional 90% C.L. to sin^2 theta_{13} < 0.04 (0.09) and 1.9 (1.7) x 10^-3 < Delta m^2 < 2.6 (2.7) x 10^-3 eV^2. The atmospheric mixing angle is within 0.407 <= sin^2 theta_{23} <= 0.583 at 90% C.L.



قيم البحث

اقرأ أيضاً

An analysis of atmospheric neutrino data from all four run periods of superk optimized for sensitivity to the neutrino mass hierarchy is presented. Confidence intervals for $Delta m^2_{32}$, $sin^2 theta_{23}$, $sin^2 theta_{13}$ and $delta_{CP}$ are presented for normal neutrino mass hierarchy and inverted neutrino mass hierarchy hypotheses based on atmospheric neutrino data alone. Additional constraints from reactor data on $theta_{13}$ and from published binned T2K data on muon neutrino disappearance and electron neutrino appearance are added to the atmospheric neutrino fit to give enhanced constraints on the above parameters. Over the range of parameters allowed at 90% confidence level, the normal mass hierarchy is favored by between 91.5% and 94.5% based on the combined result.
A new event reconstruction algorithm based on a maximum likelihood method has been developed for Super-Kamiokande. Its improved kinematic and particle identification capabilities enable the analysis of atmospheric neutrino data in a detector volume 3 2% larger than previous analyses and increases sensitivity to the neutrino mass hierarchy. Analysis of a 253.9 kton-year exposure of the Super-Kamiokande IV atmospheric neutrino data has yielded a weak preference for the normal hierarchy, disfavoring the inverted hierarchy at 74% assuming oscillations at the best fit of the analysis.
163 - G. Mitsuka , K. Abe , Y. Hayato 2011
In this paper we study non-standard neutrino interactions as an example of physics beyond the standard model using atmospheric neutrino data collected during the Super-Kamiokande I(1996-2001) and II(2003-2005) periods. We focus on flavor-changing-neu tral-currents (FCNC), which allow neutrino flavor transitions via neutral current interactions, and effects which violate lepton non-universality (NU) and give rise to different neutral-current interaction-amplitudes for different neutrino flavors. We obtain a limit on the FCNC coupling parameter, varepsilon_{mu tau}, |varepsilon_{mu tau}|<1.1 x 10^{-2} at 90%C.L. and various constraints on other FCNC parameters as a function of the NU coupling, varepsilon_{e e}. We find no evidence of non-standard neutrino interactions in the Super-Kamiokande atmospheric data.
176 - E. Konishi 2010
It is said that the finding of the maximum oscillation in neutrino oscillation by Super-Kamiokande is one of the major achievements of the SK. In present paper, we examine the assumption made by Super-Kamiokande Collaboration that the direction of th e incident neutrino is approximately the same as that of the produced lepton, which is the cornerstone in their L/E analysis and we find this approximation does not hold even approximately. In the Part 2 of the subsequent paper, we apply the results from Figures 12, 13 and 14 to L/E analysis and conclude that one cannot obtain the maximum oscillation in L/E analysis which shows strongly the oscillation pattern from the neutrino oscillation.
137 - K. Abe , Y. Hayato , T. Iida 2010
The results of the third phase of the Super-Kamiokande solar neutrino measurement are presented and compared to the first and second phase results. With improved detector calibrations, a full detector simulation, and improved analysis methods, the sy stematic uncertainty on the total neutrino flux is estimated to be ?2.1%, which is about two thirds of the systematic uncertainty for the first phase of Super-Kamiokande. The observed 8B solar flux in the 5.0 to 20 MeV total electron energy region is 2.32+/-0.04 (stat.)+/-0.05 (sys.) *10^6 cm^-2sec^-1, in agreement with previous measurements. A combined oscillation analysis is carried out using SK-I, II, and III data, and the results are also combined with the results of other solar neutrino experiments. The best-fit oscillation parameters are obtained to be sin^2 {theta}12 = 0.30+0.02-0.01(tan^2 {theta}12 = 0.42+0.04 -0.02) and {Delta}m2_21 = 6.2+1.1-1.9 *10^-5eV^2. Combined with KamLAND results, the best-fit oscillation parameters are found to be sin^2 {theta}12 = 0.31+/-0.01(tan^2 {theta}12 = 0.44+/-0.03) and {Delta}m2_21 = 7.6?0.2*10^-5eV^2 . The 8B neutrino flux obtained from global solar neutrino experiments is 5.3+/-0.2(stat.+sys.)*10^6cm^-2s^-1, while the 8B flux becomes 5.1+/-0.1(stat.+sys.)*10^6cm^-2s^-1 by adding KamLAND result. In a three-flavor analysis combining all solar neutrino experiments, the upper limit of sin^2 {theta}13 is 0.060 at 95% C.L.. After combination with KamLAND results, the upper limit of sin^2 {theta}13 is found to be 0.059 at 95% C.L..
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا