ﻻ يوجد ملخص باللغة العربية
We prove that the horizontal and vertical distributions of the tangent bundle with the Sasaki metric are isocline, the distributions given by the kernels of the horizontal and vertical lifts of the contact form $omega$ from the Heisenberg manifold $(H_3,g)$ to $(TH_3,g^S)$ are not totally geodesic, and the distributions $F^H=L(E_1^H,E_2^H)$ and $F^V=L(E_1^V,E_2^V)$ are totally geodesic, but they are not isocline. We obtain that the horizontal and natural lifts of the curves from the Heisenberg manifold $(H_3,g)$, are geodesics in the tangent bundle endowed with the Sasaki metric $(TH_3,g^s)$, if and only if the curves considered on the base manifold are geodesics. Then, we get two particular examples of geodesics from $(TH_3,g^s)$, which are not horizontal or natural lifts of geodesics from the base manifold $(H_3,g)$.
We find a new class of invariant metrics existing on the tangent bundle of any given almost-Hermitian manifold. We focus here on the case of Riemannian surfaces, which yield new examples of Kahlerian Ricci-flat manifolds in four real dimensions.
We survey on the geometry of the tangent bundle of a Riemannian manifold, endowed with the classical metric established by S. Sasaki 60 years ago. Following the results of Sasaki, we try to write and deduce them by different means. Questions of vecto
We find a family of Kahler metrics invariantly defined on the radius $r_0>0$ tangent disk bundle ${{cal T}_{M,r_0}}$ of any given real space-form $M$ or any of its quotients by discrete groups of isometries. Such metrics are complete in the non-negat
Pure combinatorial models for BPL_n and Gauss map of a combinatorial manifold are described.
Manifold hypotheses are typically used for tasks such as dimensionality reduction, interpolation, or improving classification performance. In the less common problem of manifold estimation, the task is to characterize the geometric structure of the m