ﻻ يوجد ملخص باللغة العربية
We give an alternative definition of integral at the generality of the Perron integral and propose an exposition of the foundations of integral theory starting from this new definition. Both definition and proofs needed for the development are unexpectedly simple. We show how to adapt the definition to cover the multidimensional and Stieltjes case and prove that our integral is equivalent to the Henstock-Kurzweil(-Stieltjes) integral.
By an easy trick taken from caloric polynomial theory we construct a family $mathscr{B}$ of $almost regular$ domains for the caloric Dirichlet problem. $mathscr{B}$ is a basis of the Euclidean topology. This allows to build, with a basically elementa
We give a necessary and sufficient condition for a system of linear inhomogeneous fractional differential equations to have at least one bounded solution. We also obtain an explicit description for the set of all bounded (or decay) solutions for these systems.
The theory of integration over R is rich with techniques as well as necessary and sufficient conditions under which integration can be performed. Of the many different types of integrals that have been developed since the days of Newton and Leibniz,
We give a direct evaluation of a curious integral identity, which follows from the work of Ismail and Valent on the Nevanlinna parametrization of solutions to a certain indeterminate moment problem.
This work explores a Standard Model (S.M.) extension possibility, that violates Lorentz invariance, preserving the space-time isotropy and homogeneity. In this sense HMSR represents an attempt to introduce an isotropic Lorentz Invariance Violation in