On the extension of a TCFT to the boundary of the moduli space


الملخص بالإنكليزية

The purpose of this paper is to describe an analogue of a construction of Costello in the context of finite-dimensional differential graded Frobenius algebras which produces closed forms on the decorated moduli space of Riemann surfaces. We show that this construction extends to a certain natural compactification of the moduli space which is associated to the modular closure of the associative operad, due to the absence of ultra-violet divergences in the finite-dimensional case. We demonstrate that this construction is equivalent to the dual construction of Kontsevich.

تحميل البحث