ﻻ يوجد ملخص باللغة العربية
A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but subclasses have been studied previously by other authors. The algebras are indexed by double partitions or double flag varieties. Equivalently, they are indexed by broken lines $L$. By grouping together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis. This is the final version, where some arguments have been expanded and/or improved and several typos corrected. Full bibliographic details: Journal of Algebra (2012), pp. 172-203 DOI information: 10.1016/j.jalgebra.2012.09.015
The aim of the present paper is to introduce a generalized quantum cluster character, which assigns to each object V of a finitary Abelian category C over a finite field FF_q and any sequence ii of simple objects in C the element X_{V,ii} of the corr
We study monoidal categorifications of certain monoidal subcategories $mathcal{C}_J$ of finite-dimensional modules over quantum affine algebras, whose cluster algebra structures coincide and arise from the category of finite-dimensional modules over
We discuss some aspects of the deformed W-algebras W_{q,t}[g]. In particular, we derive an explicit formula for the Kac determinant, and discuss the center when t^2 is a primitive k-th root of unity. The relation of the structure of W_{q,t}[g] to the
We describe an infinite family of non-Plucker cluster variables inside the double Bruhat cell cluster algebra defined by Berenstein, Fomin, and Zelevinsky. These cluster variables occur in a family of subalgebras of the double Bruhat cell cluster alg
The deformed $mathcal W$ algebras of type $textsf{A}$ have a uniform description in terms of the quantum toroidal $mathfrak{gl}_1$ algebra $mathcal E$. We introduce a comodule algebra $mathcal K$ over $mathcal E$ which gives a uniform construction of