ﻻ يوجد ملخص باللغة العربية
Proton recoil polarization was measured in the quasielastic 4He(e,ep)3H reaction at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2 with unprecedented precision. The polarization-transfer coefficients are found to differ from those of the 1H(e,e p) reaction, contradicting a relativistic distorted-wave approximation, and favoring either the inclusion of medium-modified proton form factors predicted by the quark-meson coupling model or a spin-dependent charge-exchange final-state interaction. For the first time, the polarization-transfer ratio is studied as a function of the virtuality of the proton.
The physics program in Hall A at Jefferson Lab commenced in the summer of 1997 with a detailed investigation of the 16O(e,ep) reaction in quasielastic, constant (q,w) kinematics at Q^2 ~ 0.8 (GeV/c)^2, q ~ 1 GeV/c, and w ~ 445 MeV. Use of a self-cali
We measured with unprecedented precision the induced polarization Py in 4He(e,ep)3H at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2. The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in ag
We have studied the quasielastic 3He(e,ep)d reaction in perpendicular coplanar kinematics, with the energy and momentum transferred by the electron fixed at 840 MeV and 1502 MeV/c, respectively. The 3He(e,ep)d cross section was measured for missing m
The interference response function f_LT (R_LT) of the D(e,ep)n reaction has been determined at squared four-momentum transfer Q^2 = 0.33 (GeV/c)^2 and for missing momenta up to p_miss= 0.29 (GeV/c). The results have been compared to calculations that
Polarization transfer in quasi-elastic nucleon knockout is sensitive to the properties of the nucleon in the nuclear medium, including possible modification of the nucleon form factor and/or spinor. In our recently completed experiment E03-104 at Jef