ﻻ يوجد ملخص باللغة العربية
Let $X$ be a real-analytic manifold and $gcolon Xto{mathbf R}^n$ a proper triangulable subanalytic map. Given a subanalytic $r$-form $omega$ on $X$ whose pull-back to every non singular fiber of $g$ is exact, we show tha $omega$ has a relative primitive: there is a subanalytic $(r-1)$-form $Omega$ such that $dgLambda (omega-dOmega)=0$. The proof uses a subanalytic triangulation to translate the problem in terms of relative Whitney forms associated to prisms. Using the combinatorics of Whitney forms, we show that the result ultimately follows from the subanaliticity of solutions of a special linear partial differential equation. The work was inspired by a question of Franc{c}ois Treves.
Let F be a totally real field, v an unramified place of F dividing p and rho a continuous irreducible two-dimensional mod p representation of G_F such that the restriction of rho to G_{F_v} is reducible and sufficiently generic. If rho is modular (an
Nous montrons que les equations du rep`ere mobile des surfaces de Bonnet conduisent `a une paire de Lax matricielle isomonodromique dordre deux pour la sixi`eme equation de Painleve. We show that the moving frame equations of Bonnet surfaces can be
We proove some inequalities concerning the product, sup * inf for some elliptic operators of order 2 and 4. Using those inequalities and the concentration phenomena we can describe the asymptotic behavior of those PDE solutions.
Let F be a finite extension of Qp, O_F its ring of integers and E a finite extension of Fp. The natural action of the unit group O_F* on O_F extends in a continuous action on the Iwasawa algebra E[[O_F]]. In this work, we show that non zero ideals of
We propose a formula expressing Perron - Frobenius eigenvectors of Cartan matrices in terms of products of values of the Gamma function.