ﻻ يوجد ملخص باللغة العربية
We report systematic ^{75}As-NQR and ^{139}La-NMR studies on nickel-pnictide superconductors LaNiAsO_{1-x}F_x (x=0, 0.06, 0.10 and 0.12). The spin lattice relaxation rate 1/T_1 decreases below T_c with a well-defined coherence peak and follows an exponential decay at low temperatures. This result indicates that the superconducting gap is fully opened, and is strikingly different from that observed in iron-pnictide analogs. In the normal state, 1/T_1T is constant in the temperature range T_c sim 4 K < T <10 K for all compounds and up to T=250 K for x=0 and 0.06, which indicates weak electron correlations and is also different from the iron analog. We argue that the differences between the iron and nickel pnictides arise from the different electronic band structure. Our results highlight the importance of the peculiar Fermi-surface topology in iron-pnictides.
We report $^{75}$As-NMR results for CrAs under pressure, which shows superconductivity adjoining a helimagnetically ordered state. We successfully evaluated the Knight shift from the spectrum, which is strongly affected by the quadrupole interaction.
We report Sb-NQR results which evidence a heavy-fermion (HF) behavior and an unconventional superconducting (SC) property in the filled-skutterudite compound PrOs_4Sb_12 revealing a SC transition temperature T_c=1.85 K. The temperature (T) dependence
Julien et al. have commented on two of our publications claiming that we have made erroneous interpretations of the nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) data. Specifically, they believe that their model of an extend
We report $^{75}$As nuclear quadrupole resonance (NQR) studies on superconducting oxypnictide LaFeAsO$_{0.92}$F$_{0.08}$ ($T_{rm c}$ = 23 K). The temperature dependence of the spin lattice relaxation rate (1/$T_1$) decreases below $T_{rm c}$ without
The thermal conductivity of optimally doped NaFe$_{0.972}$Co$_{0.028}$As ($T_c sim$ 20 K) and overdoped NaFe$_{0.925}$Co$_{0.075}$As ($T_c sim$ 11 K) single crystals were measured down to 50 mK. No residual linear term $kappa_0/T$ is found in zero ma