ﻻ يوجد ملخص باللغة العربية
We present a systematic study of electron backscattering phenomena during conduction for graphene nanoribbons with single-vacancy scatterers and dimensions within the capabilities of modern lithographic techniques. Our analysis builds upon an textit{ab initio} parameterized semiempirical model that breaks electron-hole symmetry and nonequilibrium Greens function methods for the calculation of the conductance distribution $g$. The underlying mechanism is based on wavefunction localizations and perturbations that in the case of the first $pi-pi{}^*$ plateau can give rise to impurity-like pseudogaps with both donor and acceptor characteristics. Confinement and geometry are crucial for the manifestation of such effects. Self-consistent quantum transport calculations characterize vacancies as local charging centers that can induce electrostatic inhomogeneities on the ribbon topology.
We study the interplay between lateral confinement and photon-induced processes on the electronic properties of illuminated graphene nanoribbons. We find that by tuning the device setup (edges geometries, ribbon width and polarization direction), a l
We report the experimental observation of conductance quantization in graphene nanoribbons, where 1D transport subbands are formed due to the lateral quantum confinement. We show that this quantization in graphene nanoribbons can be observed at tempe
A theoretical study of the transport properties of zigzag and armchair graphene nanoribbons with a magnetic barrier on top is presented. The magnetic barrier modifies the energy spectrum of the nanoribbons locally, which results in an energy shift of
The wavefunction of a massless fermion consists of two chiralities, left-handed and right-handed, which are eigenstates of the chiral operator. The theory of weak interactions of elementally particle physics is not symmetric about the two chiralities
We have calculated the optical conductivity of a disorder-free single graphene sheet in the presence of spin-orbit coupling, using the Kubo formalism. Both intrinsic and structural-inversion-asymmetry induced types of spin splitting are considered wi