ﻻ يوجد ملخص باللغة العربية
The European Pulsar Timing Array (EPTA) network is a collaboration between the five largest radio telescopes in Europe aiming to study the astrophysics of millisecond pulsars and to detect cosmological gravitational waves in the nano-Hertz regime. The advantages and techniques of handling the multi-telescope datasets of a number of sources will be presented. In addition, the results of the EPTA timing analysis of the pulsar-white dwarf binary PSR J1012+5307 will be reported. Specifically, the measurements for the first time for this system, of the parallax, the variation of the projected semi-major axis and of the orbital period. Finally, the derived stringent, theory independent limits on alternative theories of gravity, with the use of this ideal laboratory for strong- field gravity tests, will be presented.
We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 years. It forms the basis for the stoch
The PSRIX backend is the primary pulsar timing instrument of the Effelsberg 100-m radio telescope since early 2011. This new ROACH-based system enables bandwidths up to 500 MHz to be recorded, significantly more than what was possible with its predec
We demonstrate that the sensitivity of high-precision pulsar timing experiments will be ultimately limited by the broadband intensity modulation that is intrinsic to the pulsars stochastic radio signal. That is, as the peak flux of the pulsar approac
Signals from radio pulsars show a wavelength-dependent delay due to dispersion in the interstellar plasma. At a typical observing wavelength, this delay can vary by tens of microseconds on five-year time scales, far in excess of signals of interest t
We report on a high-precision timing analysis and an astrophysical study of the binary millisecond pulsar, PSR J1909$-$3744, motivated by the accumulation of data with well improved quality over the past decade. Using 15 years of observations with th