ﻻ يوجد ملخص باللغة العربية
It has been suggested that a resonance between a rotating bar and stars in the solar neighbourhood can produce the so called Hercules stream. Recently, a second bar may have been identified in the Galactic centre, the so called long bar, which is longer and much flatter than the traditional Galactic bar, and has a similar mass. We looked at the dynamical effects of both bars, separately and together, on orbits of stars integrated backwards from local position and velocities, and a model of the Galactic potential which includes the bars directly. Both bars can produce Hercules like features, and allow us to measure the rotation rate of the bar(s). We measure a pattern speed, for both bars, of 1.87 +/- 0.02 times the local circular frequency. This is on par with previous measurements for the Galactic bar, although we do adopt a slightly different Solar motion. Finally, we identify a new kinematic feature in local velocity space, caused by the long bar, which is tempting to identify with the high velocity Arcturus stream.
Using high-resolution spectra of nearby F and G dwarf stars, we have investigated the detailed abundance and age structure of the Hercules stream. We find that the stars in the stream have a wide range of stellar ages, metallicities, and element abun
The Hercules stream is a group of co-moving stars in the Solar neighbourhood, which can potentially be explained as a signature of either the outer Lindblad resonance (OLR) of a fast Galactic bar or the corotation resonance of a slower bar. In either
We analyzed the velocity space of the thin and thick-disk Gaia white dwarf population within 100 pc looking for signatures of the Hercules stellar stream. We aimed to identify those objects belonging to the Hercules stream and, by taking advantage of
The origin of the Hercules stream, the most prominent velocity substructure in the Solar neighbour disc stars, is still under debate. Recent accurate measurements of position, velocity, and metallicity provided by Tycho Gaia Astrometric Solution (TGA
The last two years have seen widespread acceptance of the idea that the Milky Way halo was largely created in an early (8-10 Gyr ago) and massive ($> 10^{10} M_odot$) merger. The roots of this idea pre-date the Gaia mission, but the exquisite proper