ترغب بنشر مسار تعليمي؟ اضغط هنا

Disk evaporation in a planetary nebula

317   0   0.0 ( 0 )
 نشر من قبل Krzysztof Gesicki
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Galactic bulge planetary nebula M 2-29 (for which a 3-year eclipse event of the central star has been attributed to a dust disk) using HST imaging and VLT spectroscopy, both long-slit and integral field. The central cavity of M 2-29 is filled with a decreasing, slow wind. An inner high density core is detected, with radius less than 250 AU, interpreted as a rotating gas/dust disk with a bipolar disk wind. The evaporating disk is argued to be the source of the slow wind. The central star is a source of a very fast wind (1000 km/s). An outer, partial ring is seen in the equatorial plane, expanding at 12 km/s. The azimuthal asymmetry is attributed to mass-loss modulation by an eccentric binary. M 2-29 presents a crucial point in disk evolution, where ionization causes the gas to be lost, leaving a low-mass dust disk behind.



قيم البحث

اقرأ أيضاً

The emission nebula around the subdwarf B (sdB) star PHL 932 is currently classified as a planetary nebula (PN) in the literature. Based on a large body of multi-wavelength data, both new and previously published, we show here that this low-excitatio n nebula is in fact a small Stromgren sphere (HII region) in the interstellar medium around this star. We summarise the properties of the nebula and its ionizing star, and discuss its evolutionary status. We find no compelling evidence for close binarity, arguing that PHL 932 is an ordinary sdB star. We also find that the emission nebulae around the hot DO stars PG 0108+101 and PG 0109+111 are also Stromgren spheres in the ISM, and along with PHL 932, are probably associated with the same extensive region of high-latitude molecular gas in Pisces-Pegasus.
Water fountains (WFs) are evolved objects showing high-velocity, collimated jets traced by water maser emission. Most of them are in the post-Asymptotic Giant Branch and they may represent one of the first manifestations of collimated mass loss in ev olved stars. We present water maser, carbon monoxide, and mid-infrared spectroscopic data (obtained with the Australia Telescope Compact Array, Herschel Space Observatory, and the Very Large Telescope, respectively) toward IRAS 15103--5754, a possible planetary nebula (PN) with WF characteristics. Carbon monoxide observations show that IRAS 15103-5754 is an evolved object, while the mid-IR spectrum displays unambiguous [NeII] emission, indicating that photoionization has started and thus, its nature as a PN is confirmed. Water maser spectra show several components spreading over a large velocity range ~75 km/s and tracing a collimated jet. This indicates that the object is a WF, the first WF known that has already entered the PN phase. However, the spatial and kinematical distribution of the maser emission in this object are significantly different from those in other WFs. Moreover, the velocity distribution of the maser emission shows a Hubble-like flow (higher velocities at larger distances from the central star), consistent with a short-lived, explosive mass-loss event. This velocity pattern is not seen in other WFs (presumably in earlier evolutionary stages). We therefore suggest that we are witnessing a fundamental change of mass-loss processes in WFs, with water masers being pumped by steady jets in post-AGB stars, but tracing explosive/ballistic events as the object enters the PN phase.
157 - K. B. Kwitter 2014
We present a summary of current research on planetary nebulae and their central stars, and related subjects such as atomic processes in ionized nebulae, AGB and post-AGB evolution. Future advances are discussed that will be essential to substantial improvements in our knowledge in the field.
We present high-angular-resolution {it Hubble Space Telescope (HST)} optical and near-infrared imaging of the compact planetary nebula (PN) IRAS 21282+5050. Optical images of this object reveal several complex morphological structures including three pairs of bipolar lobes and an elliptical shell lying close to the plane of the sky. From near-infrared observations, we found a dust torus oriented nearly perpendicular to the major axis of elliptical shell. The results suggest that IRAS 21282+5050 is a multipolar PN, and these structures developed early during the post asymptotic-giant-branch (AGB) evolution. From a three-dimensional (3-D) model, we derived the physical dimensions of these apparent structures. When the 3-D model is viewed from different orientations, IRAS 21282+5050 shows similar apparent structures as other multipolar PNs. Analysis of the spectral energy distribution and optical spectroscopic observations of the nebula suggests the presence of a cool companion to the hot central star responsible for the ionization of the nebula. Whether the binary nature of the central star has any relations with the multipolar structure of the nebula needs to be further investigated.
We present radial velocities for a sample of 723 planetary nebulae (PNe) in the disk and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel telescope. Velocities are determined using the [OIII] 5007 Angstrom emission l ine. Rotation and velocity dispersion are measured to a radius of 50 arcminutes (11.5 kpc), the first stellar rotation curve and velocity dispersion profile for M31 to such a radius. Our kinematics are consistent with rotational support at radii well beyond the bulge effective radius of 1.4kpc, although our data beyond a radius of 5kpc are limited. We present tentative evidence for kinematic substructure in the bulge of M31 to be studied fully in a later work. This paper is part of an ongoing project to constrain the total mass, mass distribution and velocity anisotropy of the disk, bulge and halo of M31.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا