ﻻ يوجد ملخص باللغة العربية
In this article we provide an algebraic characterization of those groups of $PSL(3,Bbb{C})$ whose limit set in the Kulkarni sense has, exactly, four lines in general position. Also we show that, for this class of groups, the equicontinuity set of the group is the largest open set where the group acts discontinuously and agrees with the discontinuity set of the group.
If $Gamma$ is a discrete subgroup of $PSL(3,Bbb{C})$, it is determined the equicontinuity region $Eq(Gamma)$ of the natural action of $Gamma$ on $Bbb{P}^2_Bbb{C}$. It is also proved that the action restricted to $Eq(Gamma)$ is discontinuous, and $Eq(
In this note, we show that the exceptional algebraic set of an infinite discrete group in $PSL(3,Bbb{C})$ should be a finite union of complex lines, copies of the Veronese curve or copies of the cubic $xy^2-z^3$.
Given an iterated function system of affine dilations with fixed points the vertices of a regular polygon, we characterize which points in the limit set lie on the boundary of its convex hull.
We prove that there exists a homeomorphism $chi$ between the connectedness locus $mathcal{M}_{Gamma}$ for the family $mathcal{F}_a$ of $(2:2)$ holomorphic correspondences introduced by Bullett and Penrose, and the parabolic Mandelbrot set $mathcal{M}
We investigate some connectedness properties of the set of points K(f) where the iterates of an entire function f are bounded. In particular, we describe a class of transcendental entire functions for which an analogue of the Branner-Hubbard conjectu