ﻻ يوجد ملخص باللغة العربية
We define a negative entanglement measure for separable states which shows that how much entanglement one should compensate the unentangled state at least for changing it into an entangled state. For two-qubit systems and some special classes of states in higher-dimensional systems, the explicit formula and the lower bounds for the negative entanglement measure have been presented, and it always vanishes for bipartite separable pure states. The negative entanglement measure can be used as a useful quantity to describe the entanglement dynamics and the quantum phase transition. In the transverse Ising model, the first derivatives of negative entanglement measure diverge on approaching the critical value of the quantum phase transition, although these two-site reduced density matrices have no entanglement at all. In the 1D Bose-Hubbard model, the NEM as a function of $t/U$ changes from zero to negative on approaching the critical point of quantum phase transition.
We examine a class of bipartite mixed states which we call X states and report several analytic results related to the occurrence of so-called entanglement sudden death (ESD) under time evolution in the presence of common types of environmental noise
It was shown that two distant particles can be entangled by sending a third particle never entangled with the other two [T. S. Cubitt et al., Phys. Rev. Lett. 91, 037902 (2003)]. In this paper, we investigate a class of three-qubit separable states t
In this paper, we extract from concurrence its variable part, denoted $Lambda$, and use $Lambda$ as a time-dependent measure of distance, either postive or negative, from the separability boundary. We use it to investigate entanglement dynamics of tw
Unambiguous state discrimination of two mixed bipartite states via local operations and classical communications (LOCC) is studied and compared with the result of a scheme realized via global measurement. We show that the success probability of a glo
Three distant labs A, B and C, having no prior entanglement can establish a shared GHZ state, when one of them say A sends two particles to B and C for their local actions. The mediating particles remain separable from each other and from the particl