ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial contraction of the Poincare group and Maxwells equations in the electric limit

271   0   0.0 ( 0 )
 نشر من قبل Henry Reich
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The contraction of the Poincare group with respect to the space trans- lations subgroup gives rise to a group that bears a certain duality relation to the Galilei group, that is, the contraction limit of the Poincare group with respect to the time translations subgroup. In view of this duality, we call the former the dual Galilei group. A rather remarkable feature of the dual Galilei group is that the time translations constitute a central subgroup. Therewith, in unitary irreducible representations (UIR) of the group, the Hamiltonian appears as a Casimir operator proportional to the identity H = EI, with E (and a spin value s) uniquely characterizing the representation. Hence, a physical system characterized by a UIR of the dual Galilei group displays no non-trivial time evolution. Moreover, the combined U(1) gauge group and the dual Galilei group underlie a non- relativistic limit of Maxwells equations known as the electric limit. The analysis presented here shows that only electrostatics is possible for the electric limit, wholly in harmony with the trivial nature of time evolution governed by the dual Galilei group.



قيم البحث

اقرأ أيضاً

The Dicke model is derived in the contraction limit of a pseudo-deformation of the quasispin algebra in the su(2)-based Richardson-Gaudin models. Likewise, the integrability of the Dicke model is established by constructing the full set of conserved charges, the form of the Bethe Ansatz state, and the associated Richardson-Gaudin equations. Thanks to the formulation in terms of the pseudo-deformation, the connection from the su(2)-based Richardson-Gaudin model towards the Dicke model can be performed adiabatically.
The representation of the conformal group (PSU(2,2)) on the space of solutions to Maxwells equations on the conformal compactification of Minkowski space is shown to break up into four irreducible unitarizable smooth Frechet representations of modera te growth. An explicit inner product is defined on each representation. The frequency spectrum of each of these representations is analyzed. These representations have notable properties; in particular they have positive or negative energy, they are of type $A_{frak q}(lambda)$ and are quaternionic. Physical implications of the results are explained.
In this paper we treat the time evolution of unitary elements in the N level system and consider the reduced dynamics from the unitary group U(N) to flag manifolds of the second type (in our terminology). Then we derive a set of differential equation s of matrix Riccati types interacting with one another and present an important problem on a nonlinear superposition formula that the Riccati equation satisfies. Our result is a natural generalization of the paper {bf Chaturvedi et al} (arXiv : 0706.0964 [quant-ph]).
288 - Jeremiah Birrell , Jan Wehr 2018
We study the small-mass (overdamped) limit of Langevin equations for a particle in a potential and/or magnetic field with matrix-valued and state-dependent drift and diffusion. We utilize a bootstrapping argument to derive a hierarchy of approximate equations for the position degrees of freedom that are able to achieve accuracy of order $m^{ell/2}$ over compact time intervals for any $ellinmathbb{Z}^+$. This generalizes prior derivations of the homogenized equation for the position degrees of freedom in the $mto 0$ limit, which result in order $m^{1/2}$ approximations. Our results cover bounded forces, for which we prove convergence in $L^p$ norms, and unbounded forces, in which case we prove convergence in probability.
This paper explores a class of non-linear constitutive relations for materials with memory in the framework of covariant macroscopic Maxwell theory. Based on earlier models for the response of hysteretic ferromagnetic materials to prescribed slowly v arying magnetic background fields, generalized models are explored that are applicable to accelerating hysteretic magneto-electric substances coupled self-consistently to Maxwell fields. Using a parameterized model consistent with experimental data for a particular material that exhibits purely ferroelectric hysteresis when at rest in a slowly varying electric field, a constitutive model is constructed that permits a numerical analysis of its response to a driven harmonic electromagnetic field in a rectangular cavity. This response is then contrasted with its predicted response when set in uniform rotary motion in the cavity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا